Dymola
Dynamic Modeling Laboratory

User’s Manual
Dymola 6 Additions

Version 6.0

© Copyright 1992-2006 by Dynasim AB. All rights reserved.
Dymola™ is a trademark of Dynasim AB.

Dymola® is a registered trademark of Dynasim AB in Sweden.
Modelica® is a registered trademark of the Modelica Association.

Dynasim AB
Research Park Ideon
SE-223 70 Lund
Sweden

E-mail: support@Dynasim.com
URL: http://www.Dynasim.com
Phone: +46 46 2862500

Fax: +46 46 2862501

Contents

Recent featUreS IN DYMOIA.ooiiiiiii e 9
GIAPRICAL ©AIEOTuieiieiieeiieieciese ettt ettt et e et e et e eebeetaeetaeste e beesseesseesaesseesseesseesseesseassesssesssessesseesseessessnesseanns 9
Parameter QIAl0E.......eeovieieeie ettt ettt et e et e st e st e e ae et e et e et b e etae et e e b e e neenbeenaesnteenee st enteenseenteenrenraens 9
PACKAZE DIOWSETeiiuieiiie ettt ettt ettt et e e st e s at et e e s s e esseasse et aesseesseesseansesssesseesseenseenseassenssenssenseensennsennsas 15
(070350170 TS 1 LA o (0) £]<) USSR 16
Replaceable COMPONENLSceeuieriieiieiieeie ettt ettt ettt et et et et e e st e e st e s e e st enseeneeeneesseenseenseenseensesneesseeseennes 17
COMMECTIONS ..ttt ettt et e et et ettt eete et e e s b e e bt e et e aeesaeesa e e bt emeeem b e emeeeb e e bt em bt embeemeeeaeeeaeeeb e e bt emteenbeeseeabeebeenseenseenees 18
GrapPhiCal @AIEINE ..eouveeueeiiieeeie ettt ettt ettt e a e e b e e bt e bt e bt et e eatesaeesb e e bt et e embeeseeebeenbeebeenaeenees 19
HTML dOCUMENEALION ...ttt ettt ee et ettt sb e bt et et et et e st e e b e saees e emeen s e b e ebeebeeseeseeneensensenseebesneenes 22
SEHNGS ANA OPLIONS....eeuvieiiiieiiieieiieettete et eteette st te st esteeseesbeeseeeseesseesseesseesseesseassesssessaesseesseassesssesssesssenseessesssenssens 24
IMOAETICA tEXE EAILOT.....eueeuteutiierteetert ettt ettt ettt b e bt et ea et et be s b e bt e bt e st et et e s bt sbesbeeaeea b et et enbesbeebeenean 26
Variable dECIATATIONSccuetiriirtiiterteei ettt ettt b ettt ettt b e bbbt et et et s bt besbe e bt et et e be st e sbeebeeaee 26
EdItOr CONTEXE INCIIULeiii ettt ettt ettt ettt e e et e et et en e e st eese e s e e s e ensesmeesneeeneenseenseenseenseeneenneenseenses 28
Other Operations N tEXE ©AIEOTc.eeuieiieieciere ettt ettt e et e st et e te e et e eesaeessee st enteenseeneesseesseenseenseenees 30
USEA CLASSES. ...ttt ettt ettt ettt et e a e e e e e bt e b e e bt et e e at e sa e e sb e e bt em bt em bt en e e es e e bt e bt e bt eabeeatesaeesbeeteenee 30
MOAEIICA LANGUAZEeeeeeeiieiiete ettt ettt ettt e s e ea e e bt e e b e e bt e bt emteseeesaeeeb e e bt emteenteeneeebeebeenbeenneeneas 31
AATTAYS 11ttt ettt ettt eeite ettt eette ettt ette e bt e ette e teeesbee e baeenbeeaabaeenbeeaatteenbeeaabaeenheeeabaeenbeeeataeenbeeentaeenbeeenbeeenseeentaeenbeeentaeenseenas 31
ConditionNal ECIATALIONSeitirtiitietietieietete sttt ettt ettt ettt b e bt eb e et e et e st e e bt saees e et entenaenbeebeeneene 32
Checking for Structural SINZUIATILIESccverieriieriieite ettt ettt e e e e st e saeesseeseesseesseesaessaenseeseensennnes 32
IMProvements N dIAZNOSTICSccviervieiieieeierte st et et e stestte et eteebeesbeesaessaesseesseanseessesssesseesseenseensenssesssesseensennses 34
Evaluation Of PATAMEIETSc.eeruieiieiieieeeie ettt ettt et e et e e et et e eseeese e s e e seenseeneeeneeeseesseenseenseensesneesneeseenses 34
DyNamics StaAte SCIECTIONeeuiiriieiieiieieee ettt ettt et et et et e e et e s st et e e bt eseeneesneeeaeesseenseenseensesneesneeseennes 34
Storing Of Protected VAIIADIEScoouiiiieiiieieet ettt ettt et sae ettt ettt eneenaeens 35
(03115, ORI 35
STIMIULALION ...ttt ettt ettt a et e e b e e bt e bt e bt eb e et e st e b e e b e e bt e bt eb e e st em s et et e bt ebeebeeaeessentensenbesbeebeeneenes 36

COMMANGAS INEIIUeveiiieeieeeeteee e ettt e eeee e eete e e eeeeeeeeteeeeeeaeeeeeaeeeeesaseseeesseeeeeseeesesseeeeensseeesseeesentseseensnneesaseeeeans 36

STMUIATION WINAOWS ...eeeieiie ettt et et et ettt e e ate st e s st e te e et eneeenseeneeeseeseenseenseenseeneesneesneenseenseenseensens 36
Improvements in iNtEractive TUNCLIONSc.eeiiieiiieie ettt ettt st ste et enteeneesseesseenseenseenees 37
IMINOT TMPTOVEITIEIILSc..eeeietietiente et ette et e st te bt e bt eteeatesatesteesteemteemtees e e eseeebe e beenbeembeemeesaeesaeenbeemseenteastesneenbeebeenees 38
Diagram layer in sSIMulation MOAEcoiiiuiiiiiiiiie ettt sttt ettt ee e st e b e sae e e enees 40
IMProVed EXPETIMENT SELUPeevviertietieiieereitieseesteesteeteeeesteesseesseesseessaessesseesseesseesseessesssesseesseesseessenssesssesssessennses 41
Output of manipulated equations in Modelica fOrmatcceeoveviieeiieiiiiierieeee e 42
DiSCrimiNating STAIt VAIUESecuvervieiieiieiesieseesteesteetestesttesteesteesseassesssesseesaesseessesssesssesseesseesseensenssesssesseessennses 51
Bounds checKing fOr VAriablesc.ccciiieiieiieiieie ettt te et e e s e sseeseesseessesssessaenseeseensennnas 53
Traceback message for rrors i fUNCHIONScc.eiiiieiieiee ettt ettt ste ettt eneeseeesseenseenseenees 53
Direct link in error log to variables in model WindOWccoeiuieiiiiiiiieiee e 55
Extended online diagnostics fOr NON-1INEAr SYSEEIMS.cceeruieriieriieiieieet ettt ettt e e e 56
Extended diagnostics for StuCK SIMUIATIONeoiuiiiiiiiiiiiiie et 58
Ensuring that ‘Stop’ Stops the SIMUIALIONcceeeviiriiiiieieeteee ettt et sreesbeebeesbeessesssesseesseesseennas 59
New Integration alZOTTERIMISc.civieiiiiiieii ettt et e st e e e e be e beesbeesbeessesssesseesseesseessesssessnenns 60
ANALYLIC JACODIANS......cutieiiieiieiiecietiee ettt et e e et e et e e s ae e b e esseesaesseesssesseesseenseessenssesssenseensaenseensesnsesnnenns 62
CommAands aNd SCIIPLINEZ.ccuverieriieriieiieieeiestere et et e stestte st eteeseasseessesseesseeseessesssesssesseesseesseessenssesssesseessesses 63
PIOttNG AN ANIMATION.ecueiiiietieieeieete ettt et te ettt e st e et et eateeseeeseesseesseenseenseemeesseesneeseanseenseenseeseenseenneenses 65
Variable DrOWSEI CONEEXE INETIUL.....c..eeueeieeieeeiertiete et eteete et testee et eteeeesaeessee st e st eneeenseeseesseenseeseenseensesneesseenseenes 65
DISPIAY IS ..ottt ettt et s h e b et e a e e et e eb e e e bt e b e et e emeeeaeeeaeeeb e e bt en bt enbeeneeeb e e beebeenbeeneas 66
(0135150 g o) La] 511 V- OO TSROSO 67
AATHIMIALION ...ttt ettt ettt b e bt e st e s e e et e be e bt eh e e st em e en e e b e bt eh e e bt eh e en b et et e bt eheebeeheen b et et e nbe e enes 67
Matlab and STMUIINKcc.oiiiiie ettt ettt st b e bt eb et e et e st e sbe e bt ebeene et enbenbesbeeaeeneens 68
LUDTATIES ..ottt ettt et st h et eh ettt s h e bt eh e eb e atea et et bt S bt e b e e bbb e e et e bt sh bt bt e bt et et et e nae b e 68
Modelica Standard Library VEISION 2.2cc.cccveiieriesieriresieniieieeieeseeetesseesseesseessesssesssesssesseesseessesssesssesssessesses 68
Comparison to Modelica Standard Library 1.6ccoociiiiriiiieiieeeesesee ettt 70
(035150 g L) 1 4 1< SR 71
Library handling iMProVEMENLScccuiiiiitiiiiiieeie ettt ettt e et et e et e sbee bt et e esteeneesbeenbeeseenseenees 72
Installation and SEtUP OF DYMOIA........coiiiiiiiiie ettt ettt st a et et eaee e 72
Modelica Data Structures and GUIL...........ccoooiiiiiiiiii e 77
RECOTAS AN QIAlOES.eoueeeiieeiieii ettt ettt ettt et e bt e e et e e e e e ae e eaee st e bt et e enteente st ene e teenneennes 77
TADS Q1A GIOUPS ...ttt ettt ettt et a et e ettt e st e eb e e bt e bt e beeaeeeaeesaeeee e e bt enteemteeseeebeenbeenseenneeneas 80
Labels ANnd LAYOUL......coueiiiiiece ettt et b e b e b ettt e at e she e bt e bt et e ea bt b e eb e e b e e bt enbeeaees 82
Alternative forms for iNPUL fIELASoeiiiiiiieiiee ettt ettt ae b eneas 83
Illustrations and formatting i dIAlOZScccveriiiieriiiiieie ettt ste e b ee st e sreesseebeesbesssesssesssesseennas 85
Declare variable dIAlOZ.......c.ccveiiiriieiieiieie ettt et a e e st e ste et e e st enbeasbeeraenraeseenns 87
SPeCialiZed GUI WIAZELScuveeeieriieiieiieie ettt ettt ettt et este e st e b e esbeesaesseessaesseenseensesssesssesseeseenseensennsens 88
Checking Of INPUL AALA.........coiiiiiieiiee ettt ettt e ettt et e et e et e s e e et e saeesseenseeneeenseeneesneenseennes 89

F N) £ O (010) (' LSS 91
VISUBNIZE 3D ..t 95
IIEEOAUCTION ...ttt bbbt ea et et b e bt bt e bt e bt et et e st e st e ebe s bt ebtent et enbenteebesueebeene 95
Inserting and reMOVING ODJECES.......eeiviiiieiierieriierte et eteette et et esteete et e s seeseeeseenseessesssessaeseeseensesnsesssesseenseenseensenssens 97
BaSIC PIIMIITIVES ... eeteeteeie ettt ettt ettt e et e st e st e e bt eeeeaeeeseess e e st enteeneeenseeseeesee s e enseenseensesmeesneenseenseenseenseensenseens 106
SUITACE PLOES ...ttt ettt ettt st e st et e et et e ea e es e e st e st enseenseeneesmeesaeenseenseenseeneeeseenseenseenneeneas 109
Model EXPerimentationc.coiiiiiiiiieiie ettt e et e e sbe e sraaenreeanee s 121
IIEEOAUCTION ...ttt b bbb et ettt b e sb e e bt e bt e st et et e bt sh e ebeebeebe et et e benaeebes 121
Varying parameters 0f @ MOGE]cc.ooviieiiiiiiiieciereectee ettt ettt e staeste e be e seessesseesaeesseeseenseensennsens 122

Case Study: CoupledCIUtches MOAEL.........c.occviiieiieiieieit ettt e e seeesaeesseenseenseensens 122

POITUID PATAMELETSeeeiieeiie ettt ettt ettt ettt e et esae et e et e e et eneeeseesseeasee s e ensesmeesneeeneesseanseenseenseeneenneans 123
Sweep One Parameter — tWO VATTANESc..coeruiruerieieiertententine ettt st st sttt et et este b et ebeeaeesnensesenseseenes 128
SWEEP TWO PATAIMEGLETS.ceueeutieniieuieetteett ettt et et setesteeste e te et e eateebeeebeebe e bt emteeatesstesbeeseenteemteeneeabeenbeenseensesanes 132
MONEE CATLO ANALYSIS ..ttt ettt sttt ettt eat e et e e e b e b e e bt e bt eaeesaeesaeesbeebeenbeenteeneanaeens 134
DAt PrEPIOCESSINGvievvieeieetieitiesieesteeteeteettesteesteeseesseesseesaessaesaesseesseassesssesssesssesseasseessesssesssesseesseessesssesssesseensesnes 142
SEtNG UP fOI PIEPIOCESSINEvveuvieerieeiietieitiesieeteeteeteettesteesseeseeseassesssesseeseesseessesssesseesseessesssenssesseessesssessesses 142
Limiting and detrending SIZNALSccuieeiiiiieieiieieee ettt et e esteesteesbeesaesseesaeesseenseanseensesssensaens 146
Analysing Signals: iS there ANy NOISE?c..ccercierierieriietieieetesteseerteestestestessresseesseeseesseessesssesseesseesesssesnss 148
L) 4TS Fea) (SRS 150
MOl CAITDIATION ... bbbt 155
IIEEOAUCTION ...ttt b bbbt ea ettt b e s bt e bt e st e st et et e bt sb e ebeebeebt et e b e beneenbes 155
The basics of setting up and executing a calibration task...........cceeveriiriiiriieiiieniei e 156
V5] 10 (S T PSPPI 157
V5] 8063 S35 510 T (<] PSSR 159
Validation of the nominal MOcooiiiiiiiii e 161
Measurement fIle FOTMALSoouiiiuiiiii ettt ettt et ettt st esaeesbe e ae e e et e eneesaeens 167
CAlTDTATION ...ttt ettt ettt bt h e eh e st ea e e et e e bt eb e eb e e st en b et et e e bt e bt eh e eae e st et et e e bt eh e ebeeneen s et e tenbenaea 169
FIEE SLAIt VAIUESeveeieiieiieet ettt ettt et b et e st e et e e b bt eb e e st e st e b et e e b e saeebeeseens et entenbenaeas 171
TUNE thE PATAIMELELSveeuvieiieieieiieriieie ettt ettt et et et e e te st e stee st esseenseesseessessaensaesseensesssesasesssesseanseensennsenssensanns 172
Validation using measurements from firSt ATccveriieiieicierierieieie ettt sse et enseenae s 173
The setup as MOAEIICA COAE.cuiiiiiiieiieieeeet ettt et e ettt e teebe e e st e saeesaeeseenseenseeneeeneens 174
SaVING the SETUP fOT TEUSE. ...c..erueetiiiieiiiiteie ettt ettt et et ettt et ettt b e sae bt et ensenaenaenbesaens 175
Reusing a setup for a SIMIlar OPETALIONoouiiiiiiiiiiiie ettt ettt st s e bt e e eateeaeeseeens 176
Analysing parameter sensitivities and dePendenCies..........c.cueiiirierieriieiiieeete et e 177
Sweep one parameter — SWEEPPATAMEIETcccviiriieeiieeiieeite et eieeeeeeiee et e eteesbaeesaeeebaeeaeessaeensneesseensneens 177
Sweep two parameters — SWEEP TWOPATAMELETScevviiiiiieeiieiiieciie ettt stee et e steeeteesbaeebeesbeeenseeens 181
Response to parameter perturbations - perturbParametersccveeviecieeienieneereeie e see e eee e eeeeeaeseeens 182
Check if tuners can be calibrated — checkCalibrationSensitiVity.........ccveevieeieecieriienienieeesie e see e eee e 184
DESIGN OPTIMUZATION......c.eieiiiitiie bbbttt b bbbttt ne e e 189
IIEEOMUCTION ...ttt b e bbbt b e st e s et et e bt saeeb e e st em s e s et e abesbeebeeaeeseene et ebeneennes 189
FIrst OPHMIZATION SETUD ...eevviivreitiertierteeteeteeeeeeteesteeseeebeesteestesseessaesseesseessesssesseesseesseasseessasssesssesseesseessesssesseesseesennes 191
MUIti-CIItETia EXPEIIMEITINGc.vveeveetrereeieeteettesstesseeseasesssesseesseesseasseesseessesssesssessesseensesssesssesssesseenseensenssesssenseens 204
MUILI-CASE OPLIMIZATIONecuveeveeeeeetietieteeteeteettesteesteeseeaeessesseesseesseesseesseessesssessseseesseensesnsesssesssesseenseensenssenssensenns 205
MOdel MBNAGEIMENT ...t b bbb 213
VErSION MANAZEINICIIEveevveeeieeteesteeteeseeseesteesaesseesseesseasseassesseesssesseesseessesssesssesssesseesseessesssesssesssesseesseessesssesssessenns 213
The context Of VErsion MAaNAZEIMENL..........c.cccvirieriieriierieeteeteeteesteesteesseeseessesaesseesseesseessesssesseesseesseessesssesssesseens 213
SCOPE OF IMPIEMENLALIONeetieiieiiieieeieeiieie ettt ettt et et e et e etaesta e se e seenseessesssesseanseenseanseessessaesseesennsennnes 215
SUPPOTEEA FEATUIESveeeveeeieeiieit ettt ettt ettt e st et et e e sbeesaessaese e seessesssesssesseanseanseassenssesssenseensennsennnes 215
Selecting version ManagemMeENt SYSTEIMLevueerueereerieriiertiesteesteeteeseesseesseesseeaesneesneesseesseeseenseensesseesseessesnsesnnes 217
Version management USINEZ CVS..c..iiiiiiiiiiiiieietetente ettt ettt ettt et et st besaeeae et esnenaentenbenaeas 218
An example of file management USING CV'S ..ottt sttt et eaee e 219
Version management USING SVIN L....oiiiiiiii ettt ettt ettt e bt et ettt e et e ebeesbeenbeenbeenaeeneas 225
An example of file management USING SVINccciiiiiiiiiiiiiieiiece ettt ettt be e s aesaeesreebeesseessesssesseens 227
RETETEIICES ...ttt ettt h e bt e h et e s et et e e bt s bt ebe e st e st e b et e e bt saeebe e st enbenteneenbeneeas 228
MOAE] AEPEIACTICIES ..ottt ettt ettt et et et eseestesse e st esseesseessesssessaesseenseensesnsesssesssesseenseansenssenssensenns 229
CrOSS-TEIETEINCE OPTIONS ...eviieiietieiieie et eiteeteette st e bt e e eaeseeesseesseesseesseesseessesssessaesseensesnsesssesnsesseenseensennsenssensaens 230

Encryption in DYMOLAocviiiiiieieeie ettt et e st e st e st e esbeesbeesaesse e beenseenseenseennenneenseenes 230

INEEOQUCTION ...ttt ettt st e st e et e bt et ene e e s e e eseease e seenseemaeemeeeneesseanseenseenseeneenneens 230
Visible and CONCEALEA CLASSES.......ueiuieriieiieieeie ettt ettt et et et s ee st e s et et e e et enteeneeeneesseenseenseensesnees 231
Developing encrypted LIDTATIEScooueetiiiieieit ettt ettt ettt esaeesbe et e beenteeneenaeens 232
USING enCrypted COMPOMEIES.c..eiitietieiieieeite et ettentt et ettt e et eestee bt e ste e bt eatesaeesaeesaee bt enteemteemeesbeeabeenbeenseensesneas 233
EXAIMPIES ..vneviiiiiieieeie ettt ettt e e et e e bt e bt e beesbeesaesaeeese e seesbeesseess e et beese e be e seenbeesaeerteeaeeaaeenseesseenbeessentaens 234
Special annotations fOr CONCEAIMENTc.cciveriiriieiieee ettt ettt ste e beebeeraeseeesreesseeseesseessesssesssesseesss 239

Scrambling N DYIMOLA........ccciiiiiiiieii ettt et e s seesaessaeseeesse e seesseenseessessaenseeseensennnes 240

Recent features in Dymola

Recent features in Dymola

Dymola is constantly improved in order to better support building, browsing, simulating,
debugging, and understanding large complex models. This chapter describes features that
are not yet included in the manual.

Graphical editor

The graphical editor has been improved to better support editing and browsing of large
complex models.

Parameter dialog

The parameter dialog automatically gets a scrollbar for any dialog-tab that would otherwise
be too large for the screen.

The context menu for a parameter field is also available from a triangular shaped button.

2 Gain
Edit t
Edit Text
0K Copy Defaulk |
— Propagate
Select Class

RECENT FEATURES IN DYMOLA 9

e The command “Copy Default” copies the default value to the input field for further
editing.

o A line editor, “Edit Text”, is available for long parameter expressions and redeclarations.

e Command to “Propagate” a parameter in the context menu for parameters, i.e. insert a
parameter declaration in the enclosing model and bind the parameter to it. A variable
declaration dialog is displayed, see “Variable declarations” below.

The parameter dialog also has an “Info” button that shows Modelica documentation using an
external browser.

Graphical illustrations can be included to show meaning of parameters. The syntax for
adding images to a group in the parameter dialog is:

annotation (Images(Parameters(tab=""Geometry",
group="Left MacPherson",
source="images/MacPherson_text.png'")));

In this example for the Tab “Geometry” and the Group “Left MacPherson” we wanted to
add an illustration showing the meaning of parameters.

Left MacPherzon
L1 | b kL3 rCL1
21 | b m €=
TRIERD b m L4
w1 | b m) rALg
T b m

‘rUW
ws_1 | b m

cL2 rca Ly wdbIl2

q0s_1 | -

Menu for choosing constants

It is possible to annotate parameters or parameter types in order that it's possible to make a
selection from a set of values from a pull down menu. For example, setting a parameter true
or false can be made by selecting on or off as shown below.

FParameters

animation ﬂ » Enable/disable animation

n b Az of rotation

color ¥ Object color

shape | =1+ Animation shape

The needed declarations for this appearance are:

10

type OnOff = Boolean annotation (choices(
choice=false "off",
choice=true "on'));

parameter OnOff animation=false
"Enable/disable animation";

The following examples show similar choices from a set of predefined vectors representing
different common directional axes or commonly used colors. In the example to the right, a
selection has been among a set of strings.

animation |

{1 0.0} -« amis

animatior | ﬂ
=] arimation | | i | =
2 " | | color | =l

colar | | shape | -

shape]
§0.1.0} - p awis N
1001} - z axis box
any axis cylinder

The corresponding declarations are:

type Axis Real[3] annotation (choices(
choice={1,0,0} "{1,0,0} - x axis",
choice={0,1,0} "{0,1,0} - y axis",
choice={0,0,1} "{0,0,1} - z axis",
choice={0,0,0} "any axis"));
parameter Axis n={1,0,0} "Axis of rotation";
type Color Real [3] annotation (choices(
choice={1,0,0} "red",
choice={0,1,0} *"‘green™,
choice={0,0,1} "blue'™));
parameter Color color={1,0,0} "Object color";
type Shape String annotation (choices(
choice=""" "none",
choice="box" "box",
choice="cylinder"™ "cylinder'));
parameter Shape shape=""" "Animation shape";

It should be noted that, it's possible to enter any value without using the pull down menu.
This enables the use of expressions, for example.

Structured editor for parameter fields

Dymola has specialized array and matrix editors for entering structured parameters. The
context menu is available to insert (before selected entry) and delete rows and columns.
Insert after the last entry is performed by increasing the size.

RECENT FEATURES IN DYMOLA 11

Matrix Editor for tableFunction

Fows |.""
Columns |2
1 2
| 0| 0
F
2 | 0F e 0.25
3 | L Edit Text !
4 | 1.5 Cony Default 225
opy Defaul
| z 4
Delete Row
| 2F | | £.25
Delete <
- | i elete Column 3
Ok | Cancel Insert Colurmn

Data for the table can be loaded from external file in Matlab, CSV (Comma Separated
Values) or text format. The table contents can also be saved on file.

Flows |2 | Columns |3 |
1 2 3

1| 05| 1.1 0.7

z | 1.0] 09| 14]

[Ok] [Cancel] [Load] [Save] [Flat »»>]

Matrix editor has extended dialog for plotting one- and two-dimensional table functions.
The plot is displayed by pressing the “Plot >>>" button.

Plot for x

05

05
|Il] Table

[= Map Rows

1.0
[Nl Map Colurnns

A special editor for array of records is available if possible as “Edit combined” in context

menu.

12

Replaceable components

The context menu for a replaceable component allows editing of the redeclaration modifier.

redeclare VehicleD ynamics. Chassiz. Suspensions. SimpleSuspenzsion frantSuspension ﬂ 3

redeclare WehicleDynamicsz. Chagsis. Suzpensionz. SimpleSuspengiont S tece co o ooowsioe, b
Edit

Edit Text

Copy Defaulk

Propagate

Select Class

This gives the parameter dialog for frontSuspension, see also section ‘Replaceable
components’ on page 17.

A class selector for redeclare is available in context menu as ‘Select Class’. All matching
classes are listed.

Select clasz for frantSuzpenzion

=l

L MacPherson suspension with bushings, including anti roll bar linkage.

L3 MacPherson suzpension with bushings and a simplfied anti roll bar.

L3 Steerable suspension without geometry, Camber and toe are give as functions of bounce.

[MacPherson suspension with ideal joints.

3 Double wish-bone [A-aim) suspenzion with ideal joints.

L3 D ouble wish-bone [8-aim) suzpension with an onboard belle-ville to decouple suspension and anti-roll characteristics.
L3 Double wish-bone [4-armn) suspension with onboard mounted stts,

It is possible to set that all choices generated by “choicesAllMatching” and
“choicesFromPackage” are replaceable:

Advanced.AutomaticChoicesAreReplaceable=true;

Parameter dialog for inherited parameters

Parameter dialog also for inherited parameters of the shown model. This is in the context
menu in diagrams if no component is selected:

Show Redeclared

This also enabled at root-model, provided the model solely extend from other models and
contain no declarations of its own. For instance if extending from
Modelica.Mechanics.Rotational. Examples.CoupledClutches:

RECENT FEATURES IN DYMOLA 13

1.

in MyCoupled HE

Teneral | Add modiiers |
— Companent |z
Mame I Iy Coupled
Comment I
Example
—Model
Path MyCoupled
Comment
—Parameters
freqHz ¥ Hz frequency of zsine function to invoke clutchl
T2 b = time when clutch? iz invoked
T3 b = time when clutch3 iz invoked
ak. Cancel

Semantics: Parameter-changes of the root-model are stored as modifiers on the
corresponding extends-clause(s). Parameter-changes for non-root models work in the same
way if you use 'Show component' and then 'Parameters' (with no selected component) to
bring up the parameters for the component or directly use 'Parameters' for the component.

To experiment with a model such as CoupledClutches you can follow these steps. The
experimental changes are then stored in a model. Note: You can also edit parameters after
translation in the plot-selector. Such changes are not stored in the model, but you can store
them in a script using 'File/Save Script/Variables'.

Extend from the model CoupledClutches using the context menu on CoupledClutches in
the package browser, and give it a name.
Open Clazz in Thiz Window

Open Clagz in New Window

Eemave
52 Check Eerame...
Z} Search.. Duplicate Class
Cloze Extend From...
Info WewElass in Fackage,
[Hrder ¢

In the diagram select a component, several components, or no component and use the
right mouse button to bring up the parameter-dialog, and modify parameters.

Simulate. The model is translated if necessary.

Repeat from step 2.

14

Package browser

The context menu of the package browser has been extended with new functions:

Packages
Wi odelica Reference
[*odelica

[Unnamed
=] (] Desian
=] [Calibration

0
m Call Funckion. ..
@ perh

@ Open Class in This Window
=
Zipen Class in Mew Window
(Dswe Remave
@ chetSZ Check Rename. ..
@ datg Q Search... Duplicate Class
ﬁ Exal Close Extend Frarm. ..
ﬁ . InFo Mews Class in Package »
. - Order »
[T Experimentation H

The principal new operations are:

e Call Function displays a dialog to fill in parameters. The “Execute” button shows the log
window also in Modeling mode. The “Copy Call” button copies the function call
including parameter list to clipboard

Dymola.Scripting.Plotting. plotArray

b b Hewalues

y b Yewalues

shyle ’7 ¥ Siyle of plotting

labe] ¥ Teut-sting documenting the plotted variable

Execute Copy Call Cloze

e Check of package.
o Edit/Order to change order of classes.

e Close to close a package and all sub-packages. Clicking on the “+” will close the
package, but when “+” is clicked again all sub-packages will be open as before. The
“Close” will close all sub-packages so that they will not open when “+” is clicked.

A new annotation from Modelica 2.1 has been introduced:

RECENT FEATURES IN DYMOLA 15

annotation(DocumentationClass=true)

It is used to control the browser for documentation classes such as ModelicaReference. A
special icon and the description string are shown in the browser, selecting such a class will
always show the documentation layer and dragging of such classes is inhibited.

Dymola supports a new annotation to control what layer to show when a class is selected.

annotation(preferedView="diagram™, 'text', "icon", "info™)

Other minor improvements are
o Protected classes are by default not included in package browser.
o Constants are shown in the browser (the tool-tip gives the value)

e Changed handling of clicking in the package browser. There is a switch to control
browser behavior: Advanced.SingleClickOpensTree 0=no open on single click, 1=toggle
open, 2=only open; default=2.

Component browser

It is possible to drag classes from the package browser and drop them into the component
browser. This allows you to:

o Change type of declarations (by dropping on top of the component name).
e Declare new variables (see also “Variable declarations™).

e Declare new class parameters.

e Add new base-class.

When something is dropped in the component browser the following dialog is shown:

Dymola: Drop class

Action for dropped clazs

Change type of to Modelica, Slunitz. Inertia

() iAdd component of type Modelica Slunits |nertial

() Add class parameter with default Modelica. Slunits.Inertia
Add base type Modelica, Slunitz.Inertia

I oK I [Cancel

The type of a component is shown as tool tip if you rest the cursor over it.

16

Companents —

M odelica Mecharics. Rotational Exarnpl...
E--‘E:-:ample - Modelica.lcons. Example
-

T tl:'|r~'1n:u:h3|in:.5|.rvhan:hanin:s.Fln:-I:.EnlzicnnaI.Irnartial
‘:‘ LT

Replaceable components

It is possible to change class of replaceable component using the context menu for the
component. The menu shows a list of matching choices, where the icon of the current choice
is shown depressed. Selecting the menu choice “Browse...” displays a normal class browser.
If the component is declared in the current class you can only browse for replacements.

desiredVelocity controller

feedback torque motor load
/. V o A T, g AN
- tau — = =
717 =01 Parameters...
duration=2 Ti=10000) whee
wratien : Show Component
w
7 § Open Class in New Window
=5
—a 5‘:.? Attributes...
fE Lepeletier wheelset for 6-speed automatic gearbox All matching choices » | Change diass ¢
& Extended Simpson wheelset for 4-speed automatic gearbox Browse... Info

The parameter dialog shows the parameter dialog of the redeclared class (above for
Lepellitier) instead of the original class. The text and info layers show the text of the
redeclared class.

When changing class of a component (dragging the new class from package browser and
dropping it on the component in the component browser) and modifiers or connections no
longer match, you will be asked to confirm the change, and in that case they are
automatically removed.

Dymola: Change class

Changing the class wil remove the modifiers:

R ref=2

Changing the class wil remove connections:
connect(HeatingResistorl.heatPort, heatPort1)

‘Change and remove: Cancel change

RECENT FEATURES IN DYMOLA 17

Connections

Dymola has support for expandable connectors as defined in Modelica Language version 2.2.
Connecting two expandable connectors gives a dialog as shown below, and components of
expandable connectors are automatically treated as connectors.

connect(b1, b2)

Connectto component of expandable connector, by selecting sub-components below.

expandable connector b expandable connector b
Pin electrical; Pin electrical;
EngineBus engine; EngineBus engine;
Real throttle; Real throttle;

end b; end b;

Make the connection:

connect({ b1 j
b2 -electrical);

.engine
.engine.speed J

throttle

Support for array of connectors has been implemented.

e Vectors of connectors can be defined and connected to in the graphical editor.

n.n

e The graphical representation is currently as one large connector, not as "n" individual
connectors. For that reason, the extent (e.g. height) of the connector should be increased
so it can accommodate a reasonable number of connections.

e When connecting to a connector array, Dymola will present a dialog that lets the user
select index.

o Connection lines are evenly distributed on the connector, according to index number.

e The orientation of the connector determines if connections start at the top or the bottom.
The connections start from the first extent point of the connector. If a different order is
desired, use Edit/Flip Vertical or Edit/Flip Horizontal on the connector.

e The array dimension can either be a number or a simple parameter:

ConnType a[3];
parameter Real n = 2;
ConnType b[n];

In the graphical editor, connection lines are now drawn over components and other
graphical objects. This means that connections are not hidden by mistake.

Graphical editing
Recent models

Dymola provides easy access to recently viewed models. Click on the h button to select

the previous model, and on the arrow next to this to select one of the most recently viewed
models.

B~ € » = §
sy IdealGearR2T

== |dealGear

Dynamic tooltips

Resting the cursor over a model component or connector displays a tooltip with type and
name. Over a connection line the tooltip contains the names of the connectors.
Component tooltip. Ry

s

|HyLih _Valwes_ ReliefWalwe BV

Connector tooltip. Ry

Ty,

Interfaces. Port_E port_B

"Hydranlic port where oil leawes the component"

Edit Align

The alignment operations are used to organize objects in the graphical editor. It is an
alternative to moving the objects with the mouse or by using arrow keys.

RECENT FEATURES IN DYMOLA 19

T

Left
Middle
Right

|0 o

=
(=]
=

Top

L

Cenker

il Bokkamm

1t

ToGrid Chrl+G

The alignment operations Middle, Center and To Grid use a center point for alignment. For
graphical objects, the center point is the center of the bounding box of the object. For
components and connectors, the origin of the coordinate system of the component's class is
used as center.

Align objects

The majority of commands in Edit/Align align graphical objects with each other. The first
selected object is used as reference (and does not move).

First select the reference object. Then select the objects that should be aligned with the
reference while holding down the Shift key. This creates a multiple selection with a known
reference object. Finally, select the appropriate alignment from the menu. Horizontal
alignment is specified with Left, Middle and Right, vertical alignment by Top, Center and
Bottom.

Align to gridlines

Edit/Align/To Grid aligns selected objects to the gridlines. The center is aligned to the
nearest gridline or halfway between gridlines; this allows alignment of components of
default size on gridlines or between gridlines.

The keyboard shortcut is Ctrl-G.

Color selection

There is an improved color selection dialog with a better choice of standard colors. Dymola
supports true RGB color for all graphical objects, offering improved capabilities to design
icons. For backward compatibility, color information is stored both in true RGB form and
mapped to a color index as in previous versions of Dymola. Note that RGB color is lost if
models are edited in an older version of Dymola.

20

Select color

Bazic colors

Cusztam colors

N IR T O I
S R T O

Define Custam Colars >

0k I Cancel | Add to Custam Colors |

Hue: [210 Red: |80

Sat [170 Green: [160

Wal [240 Blue: [240

Bitmaps

There is a button in the drawing tool bar to insert bitmap images. Double click on the bitmap
image presents a dialog to specify filename of bitmap. Incorrect filename displays a default
bitmap (same as toolbar button). Bitmap is by default scaled preserving aspect ratio,
centered in bounding box.

The bitmap annotation also has the attributes:

o stretch=false => The bitmap is not scaled to fit the bounding box. The original
(pixel) size is preserved.

e preserveAspectRatio=false => The bitmap is scaled to fill the bounding box,
possibly distorting the image.

The default values are 'true' in both cases.

Default component size

More flexibility in defining the size of components which are dragged into a model. It is
now possible to set a component scale factor in a class. This factor defines the default size
of a component of the class. Assuming a model M has defined the scale factor 0.1, dragging
class M into another model A will create a component which size is "scale" times the size of
the coordinate system extent of M. The default settings are compatible with the default
behaviour of previous versions of Dymola.

Previously it was possible to set the default "component size" in Dymola. In this case the
receiving class A defined the size of any component that was inserted regardless of

RECENT FEATURES IN DYMOLA 21

component type. To preserve backward compatibility, the old "component size" attribute is
applied if "scale" has not been set.

To manually set "component size" the user must now edit the Modelica text of the model to
create the appropriate annotation. For this example, open model A in the Modelica text layer.
Then right-click and select Expand/Show entire text. Then add the annotation:

model A
annotation(Coordsys(component=[20, 20]));
// ...

end A;

HTML documentation

The content of the HTML generated by Dymola has been improved in several ways.

e Dymola can generate a table of contents for packages, connectors, and connectors in
models, with small icons.

e Improved parameter-tables for generated HTML: tables for function inputs and outputs
and type-column in parameter-tables.

o If the diagram layer is in “Show redeclared” mode, the generated diagrams and icons are
also shown redeclared.

o Hyperlinks using “Modelica://Package.Class” are supported. Such links makes it easy to
reference Modelica classes in the documentation (used for example in the new MultiBody
library).

e Protected classes are not included if not shown in package browser.
e Empty pictures removed.

The control over HTML generation (File/Export/Setup HTML) has been extended with
more options.

e Automatically generate table of classes with description for every package.
e Can set if revisions shall be included, not included, or included at top-level.
e Control if types and default values are included.

e Switch to insert lines between classes.

e Page break can be inserted before each class.

22

HTML Options.

Clazz contents
Parameters
E quations and components
Diagram images
lcon images
[] Filename
Syntax highlighting
Lirik ta types
Abzolute links allowed
[] Page-break before class
Harizontal rule before class
Table of contents in package
lzons in table of contents
Include type for parameters
Include default for parameters
Includes twpes and congtants

Crogs references
[] Perfile

[] Top level
Full name

Include revizgizons for

Mo claszes A4

External references
(#) Generate online documentation
() Generate HTML far referenced classes
() Generate links to online documentation

() Da nat generate external links

Diagran image size
) Small image [75%]
(%) Momal image
() Large image [150%]
) Huge image [200%]

I (]9 l ’ Cancel l

The documentation layer has been also been improved.

e Documentation window in Dymola starts with description and Information followed by
info-text (as does the generated HTML-file).

o Package content, parameters, inputs, and connectors are also included in info-layer.

RECENT FEATURES IN DYMOLA 23

A Word 2002 template for generation of printed library documentation is available in
dymola/documentation/Documentation template.doc. Index entries for class declarations is
generated according to Word HTML format.

Settings and options

The Edit/Options dialog has been extended with two new tabs.
Appearance

Protected classes are by default not included in package browser, but this can be changed by
clicking the checkbox.

Dymola by default uses the system font size for text in menus, Modelica text etc. If this size
is too small, for example when presenting Dymola for an audience, the base font size can be
changed.

On some computers the it can be difficult to see the difference between the digit “1” (one)
and the letter “1” (lower-case L). Increasing the font size often helps, but if needed the font
used for Modelica text can be changed by a command line option; which font is suitable
depends on the computer and which fons have been installed. Example:

dymola.exe —fixedfont 'Lucida Console"

Setup Options

e Werzionz | Save zettings

Graphical editor
Restrict minimum font size
Autarnatic M anhattanize of connections

[] Align dragged companents to gridlines

Package broveser

[] Include protected classes in package browser

All

Baze font size apt

L1

Ok l [Cancel

Versions

Sets the default version of the Modelica Standard Library and whether models should be
upgraded to this version. This allows the user to quickly switch between Modelica 1.6 and
Modelica 2.2. By setting the "Force" flag, models are required to be updated to the currently
selected version of Modelica; if not set, the version of Modelica that the model uses is
loaded on demand.

24

If the “Model Management” option is available, Dymola supports version control of models
using two commonly used systems, Concurrent Version System (CVS) and Subversion
(SVN).

Setup Options

Appearance Save zettings

todelica werzion
2.2 v

Force upgrade of models ta this version

Werzion management syztem
(%) Concurrent Yersion Spstem [CW5)
() Subversian [SYN]

[0K I [Cancel

Save settings

The command Save will save the current window layout or Modelica version in a file
associated with the user. The next time Dymola is started, the saved settings are used. The
layout information includes:

e Dymola window position and size.
e Position and location of command log, browsers and toolbars inside the Dymola window.

The setup information is by default stored in a system directory associated with the user. On
Windows, according to the recommendations of Microsoft, the name is typically

C:\Documents and Settings\<user>\Application
Data\Dynasim\settings.mos

The directory Dynasim is automatically created by Dymola if needed. It is also possible to
store the settings in a directory read by all users, or to save the settings as a local script file
chosen by the user.

The command Clear All will erase the settings file for the current user or all users.
Defaults will apply until settings are saved.

RECENT FEATURES IN DYMOLA 25

Setup Options

Appearance | Werziong

Store zettingz about

[] Pasition and geometry of Dymola windaw

[] Default Maodelica version

Save zettings for

(%) Current uger Save

All ugers Clear &l
C

() Save seoript as...

(]9 l [Cancel l

Modelica text editor

Variable declarations

There is less need for writing Modelica code because most variable declarations can be
generated by a drag-and-drop operation from the package browser.

To declare a new variable drag a type from the package browser to the component browser
or diagram. Several operations are possible, but the default is to add a new variable of the
specified type:

Dymola: Drop class

Action for diopped class

Change type af to Modelica Slunits Inertia

() iAdd component of type Modelica. Slunits. nertia;

() Add clazs parameter with default Modelica, Slunits. Inertia
Add baze type Modelica. Slunits. | nertia

I 1] l [Cancel

Dymola will then show a declare variable dialog where you can specify name, defaults,
variability (parameter, constant, ...).

26

Declare variable

Declaration | Type Prefix || Annotations

Type and name
[Modelica.Slurits. Inertia v | 1] [1=] |»

Description

todelica: |parameler taodelica. Slunits. Inertia J annotation [Dialoglenable=n > 1] |

[ok |[cence |

Type prefix, such as, final or protected, causality and dynamic typing is specified in the
second tab:

Declare variable

Declaration | Twpe Prefiz | Annatations

Fropertiez Connector members Causzality Ciynamic beping
|:| flow (%) Mone (&) Momal
[protected) input () inner
[] replaceable () output () outer

todelica: |parameter Modelica. Slunits. Inertia J annotation [Dialoglenable=n = 1] ; |

In the annotations you can specify the tab and group of parameters, and also make the input
field conditionally enabled depending on other parameters. These are stored as annotations.

Declare variable

| Declaration || Type Prefis |Ann0tations |

Ewaluate Hide Parameter dialog placement [] Graphical information
(%) Default (%) Default Tab | ~| s | |
) On) On Grov |)
O o O oF Hotat|nn| |
Enable |n>|1 Vl

todelica: |parameter todelica. Slunits. Inertia J annotation [Dialoglenable=n > 1] ; |

0k | [rencel |

RECENT FEATURES IN DYMOLA 27

New variables of the built-in types Real, Integer, Boolean and String can be declared with
“Edit/Variables/New Variable”.

Declare variable

Declaration |Type Frefis || Annotations

Type and name
| v|[Real [« 1] |1=] »

Description

odelica; |Hea| % |

ok || Cancel |

It is easy access to all variable declarations in a model using “Edit/Variables”. This is allows
easy modification of attributes and common annotations.

52 Check Fa
attributes. .
Yariables *
Opkions. ..
Mew variable, .

You can also use “Setting/Include non-graphical” in the component browser and select
“Parameters” for a variable; this will display the variable dialog.

Shonsr Eomponent
Parameters...

Open Clazz in Mew Window

Aftributes. .
Infa

|T Inziude r'||:|r'|-gra|:|}'|i|::al
Remove selection Show Fedeclared

Oirder 3 I

The operation “Propagate” in the parameter context menu in the parameter dialog also gives
a variable declaration dialog. See “Parameter dialog” on page 9.

Editor context menu

The context menu of the Modelica text layer has been extended with several new operations.

28

: Modelica.Tcons;

: Mode Undo Ttz
> Mode
D a7 d Redo Chrl+y
uk Chrl+x
s Ieq Copy Zhrl+C
Paste Chrl+y
Select all Chrl+a
Find Chri+F pz 1= invoked";
nZ i= inwvoked";
Goko Line Chr+G
Expand »
. Highlight Syntax Ckrl+L
ional.
Reformat Seleckion Cerl4+Shift+L
{start Carmrment Selection
art=1 Settings]
ional. Insert 3
ional. - - =z0) d:
i 2inm Edit Function Call a:
EELL Cpen in This Window

itonal. Inertia JE(J=1}) d;
ional. Clutch clutchzZipeak=1.1, fn m
ional. Inertia J20T=1) @:

Vind

Cpen in Mew Y

Info

Line: 13 | Madelinn

Syntax checking and highlighting (without reformatting) can be done by pressing on the
Modelica Text button, in addition to command “Highlight Syntax” in the context menu. The
keyboard shortcut is Ctrl-L. Syntax is automatically highlighted when you use the Check
command.

It is possible to auto-format (pretty print) a selection using the command “Reformat
Selection” in the context menu or by pressing Ctrl-Shift-L.

A command to comment out selected rows is also available in the context menu.
Support for directly setting level of expansion from the context menu of the Modelica Text

layer:

v Hide all annotations

Highlight Synta: Show components and conneck
Settings

Show entir

Inserk

Local packages are by default not shown in the Modelica Text view. They can be shown by
Expand/Expand Local Packages in the context menu.

It is possible to get a parameter-window for a function call in the Modelica text. Select a
function call up to ending parenthesis (or put the cursor inside name), and select “Edit
Function Call” in context menu.

RECENT FEATURES IN DYMOLA 29

It is possible to go to model/function from Modelica text. Select a class name (or put the
cursor inside the name). The context menu contains operations on the “Selected Class”.

Other operations in text editor

The number of the current line is shown in the statusbar. It is also shown as default if you
select “Goto Line” from the context menu, shortcut Ctrl-G.

The “Find” operation will automatically scroll the window to make the found text visible.
Find/Replace in Modelica text gives warning if search string is not found.

A selection of Modelica text layer can be printed. If you have selected a part of Modelica
Text, and then do File/Print, there is an option to print only the selected text instead of the
whole model.

The formatting of declarations, equations, etc is kept by default. The formatting is not kept
for:

e Multiple statements or declarations on one line.

e Indentation of end-tags (such as],), end <class>).
o Indentation of separators (such as ,, ;, then, else).

e Multiple empty lines.

e Comments inside declaration of components, or type-prefixes of classes (e.g. inner /*
*/ class a end aj;)

e Comments inside expressions.

e Equal sign for modifiers.

e Minor errors that are automatically corrected (e.g. incorrect use of = vs. I=).
If a syntax error is detected, the position of the error is shown by the cursor.

It is possible to copy text with hidden annotations to clipboard.

Used classes

The text of a Modelica class and classes which are used directly or indirectly is available in
the “used classes” layer. What is shown can be controlled by the context menu. This layer is
read-only, no editing is possible.

30

ARL-®-H"y, B-4»mQ HEE
model Modelica Mechanics. Botational. Inertia
"1D-rotational component with inertia”
parameter S5I.Inertia J=1 "Moment of inertia";
EI.AncularVelocity w "Ab=zolute angular welocity of component
BT Angularicceleration a "Absolute angular acceleration of o
extends Interfaces Bigid;
equation
w = der{phi);
a = deriw);
J*a = flange_a.
end Inertia; Find Crrl+F

Copy ChrlH+C
Select Al Chrl+A

) Goto Line Chrl+a o
partial modsl Mod nal. Interfaces Bigid

"B 1 i . 1
B=e class ton = = v Manual formatting
] Selected Class 3
BI.Angle phi v Include component types
"bh=solute rotation angle of compoy Include bypes 1
Flange o flange a v Include connectors-
"ilefr) driwving flangs {(flange axi Include called Functions 1
Flange b flange_h Show annatations
"iright) driven flangs {(flange axi Only Parameters 1
erquation v Include equations
flange a.phi = phi:
ge_=.-F B v Include class parameters

flange b_phi = phi;
end Rigid;

Modelica language

Dymola’s support for the Modelica language has been improved to provide better
diagnostics and support recent features of the Modelica language.

Arrays

The support for array of records makes it possible to check the entire Modelica 2.2 library.
Increased support for arrays in the interactive environment.
o The size of arrays of records can depend on the inputs.

e Arrays in functions declared using the size : can be resized by assigning to the entire
array. (This applies to both arrays of records and arrays of simple types.):

function F
input Integer n;
output Real Xx[:];
algorithm
for j in 1:n loop
x:=cat(l, x, {});
end for;
end T;

RECENT FEATURES IN DYMOLA 31

Array of records (with literal size) is supported in compiled functions.

Conditional declarations

Conditional declarations are supported according to the Modelica 2.2 semantics. If the
condition is false the component is removed including modifiers and connections to it:

model C2

extends
Modelica.Mechanics.Rotational .Examples.CoupledClutches;

parameter Boolean addFriction=true;

Modelica.Mechanics.Rotational .BearingFriction
BearingFrictionl(tau_pos=[0,2]) if addFriction annotation
(extent=[62,-62; 82,-42]);
equation

connect(BearingFrictionl.flange_a, J3.flange_a) annotation
(points=[62,-52;

50,-52; 50,0; 35,0], style(color=0, rgbhcolor={0,0,0}));

end C2;

Checking for structural singularities

Dymola has extended support for checking for structural singularities of the model
equations.

When using a model for simulation it is a basic requirement that there are the same number
of equations and number of unknown variables and that there is for each variable an
equation from which the variable can be solved. This check is now done in more detail as it
is done separately for each of the four basic data types Real, Integer, Boolean and String.
This supports better checking. For example, let r be a real variable and let i be an integer
variable and consider the equation r = i. This equation is a real equation, since we need to
use it to solve for r. We cannot use it to solve for i. It may be remarked that the checking for
structural singularities of the initialization problem has had this more detailed checking from
the start. The simulation problem is more complex since it may have high DAE index which
means that it is by definition singular if only the derivatives, der(x), and algebraic variables,
v, are considered to be the unknown variables. It is necessary to also consider the
appearances of x.

Using the check command enforces checking for structural singularities. No user is happy
when the error message at translation says missing equations or too many equations. It may
be that the components are used in a wrong way, for example a component is missing, but it
may also be that a used component model is wrong. Dymola has extended the checking of
non-partial models and block components to include checking for structural singularities in
order to give component or library developers better support. To get a non-trivial result,
Dymola puts the component in an environment that should reflect a general use of the model.

o All inputs of the model are considered to be known

e Flow variables that are not connected will at translation be set to zero. However,
checking a flow source (components that defines the flow variable) in such a way would

32

make it singular. Such models are not intended to be used in that way. At checking
Dymola instead generates for each flow variable an fictive equation referring all variables
of all the connectors of the model component. The aim is to create the most general
variable dependence that may be generated by connections.

e The equations of the model component may depend on the cardinality of its connectors
(whether a connector is connected or not). The Check operation of a component considers
all the connectors of the component to have connections on their outer sides.

e Overdetermined connectors for example in the MultiBody Library are dealt with in the
following way. If an overdetermined connector of the model component is part of a
connected set that has a root or potential root candidates everything should be fine.
Otherwise, Dymola specifies the connector as a potential root and if it is selected as a
root, Dymola adds fictive equations referring to all of the variables of the overdetermined
connectors to compensate for the missing redundancy.

Checking of model components are done recursively. As indicated above a structural
singularity may be caused by improper use of components or come from singular
components. When trying to pinpoint a source of singularity we cannot assume that the
components are correct because we have checked all model classes. First, the checking of a
model component assumes a general use, however, when actually using a component, the
environment are more specific and singularities may then show up. Secondly, modifiers
with redeclare may imply drastic changes of a component and there may not be an explicit
class to make relevant checks on. Thirdly, this is even more accentuated when there are
class parameters to set. Fourth, dimension parameters may take other values then assumed
when checking the component model. When Dymola finds a component to be singular, it
makes a recursive check of the components. Dymola then tries to set up an environment that
mimics the real environment in the best way. For example a connector not being connected,
the generic equations for the flow variables of that connector are not generated, but zero
default values are used. For example, a flow source will then be diagnosed as singular. Also
the cardinality is preserved. The error diagnosis output exploits the results. If a component is
found to be singular this is reported. If no component is found to be singular the error
message focuses on the use of the components.

The extended structural checking is enabled by default, but can be disabled by setting the
flag Advanced.ExtendedStructuralCheck = false

If a model is found to be singular at translation, the components are checked recursively.
This can be be disabled by setting the flag Advanced.ExtendedStructuralDiagnosis = false

Connectors that are neither physical (matched flow and non-flow) nor causal will assume a
suitable number of external conditions on them. If this corrects the problem no recursive
check is performed.

Models that by design are non-partial and structurally singular can use the
annotation(structurallylncomplete); This has been added to e.g.
Modelica.Blocks.Math. Twolnputs, and to the base-classes of MediaModels.

Component models of partial classes inhibit the structural check.

RECENT FEATURES IN DYMOLA 33

Improvements in diagnostics

Error messages for type errors are grouped together, and start by giving the variable or
equation that caused the error. The error messages contain links to the text of classes.

Assertions are evaluated early to improve diagnostics, and thus allow an assertion to guard
against a structural error.

The translation log now also includes statistics for the initialization problem.
Improved diagnostics for nonlinear system of equations:

e Warnings are output for variables to be solved by a nonlinear solver, but not having an
explicit start value.

e The start values for all iteration variables can be logged by setting the flag
Advanced.LogStartValuesForlterationVariables = true.

Evaluation of parameters

Top-level parameter records are handled in the same way as simple top-level parameters
(they are not evaluated when you specify that parameters should be evaluated).

The simulation menu also allows a global setting for evaluating parameters and dynamics
state-selection:

todel translation
[™ Ewaluate parameters to reduce models fimproves simulation speed).
[Use new state selection [can give dynarnic choices).

It is also possible to specify Evaluate selectively for a parameter.
o annotation(Evaluate=true) forces evaluation if value provided
o annotation(Evaluate=false) overrides the flag Evaluate

Top level packages may contain an annotation of the form:
annotation(Settings(Evaluate=true)); If a model uses anything from that package Dymola
automatically uses Evaluate=true.

Dynamics state selection

Dymola has a new state selection algorithm that may cause dynamic state selection.

Top level packages may contain an annotation of the form:
annotation(Settings(NewStateSelection=true)); If a model uses anything from that package
Dymola automatically uses NewStateSelection=true. Since Modelica 2.2 has this annotation
nearly all models will automatically use the new state selection, and may thus cause
dynamic state selection.

34

Storing of protected variables

It is possible to prevent storing protected and hidden variables during simulation. Not
storing protected variables makes it easier to find the relevant information, but in some cases
detailed post-processing require access to protected variables.

Check box in the dialog Experiment Setup/Store/Protected (default is to not store them).
flag Advanced.StoreProtectedVariables=false
specify that a variable should be hidden:

annotation(Hide=true)

annotation(Hide=false) overrides the flag Advanced.StoreProtectedVariables

This can cause some animation objects to disappear, in particular for the PowerTrain
library version 1.0 (the problem is corrected in 1.0a and later versions). You can either
enable storing of all protected variables (in Experiment Setup/Store), or contact Dynasim
for a new version of the library.

Changing "Protected variables" in Simulation/Setup/Output/Store does not force a
recompilation of the model.

Other

semiLinear () is now a built-in function and redesigned to not generate events.

Improved symbolic processing for intialization. It includes exploitation of constant
expressions. This is in particular useful for steady state initialization, where der (x)=0
is exploited to reduce the problem.

Support for record constructor.
Output arguments to functions may be omitted.

In order to support inner/outer components some new annotations are supported (can also
be useful for other cases):

annotation (

defaultComponentName="world",

defaultAttributes="inner",

missinglnnerMessage=""No \"world\" component is defined. A
default world
component with the default gravity field will be used
(g=9.81 in negative y-axis). IT this is not desired,
drag MultiBody.World into the top level of your model.",

Handling of functions with non-alphanumeric names (e.g. "<") has been improved.

Expandable connectors are supported, see Connections on page 18.

RECENT FEATURES IN DYMOLA 35

Simulation

The main improvements in the simulation mode are model-specific commands menu, a new
simulation window, and improvements in the simulation itself to give increased robustness
and diagnostics.

Commands menu

The Commands menu has the choice “Add Command”. This function is used to associate
commands (Modelica functions or script files) with models. The Commands menu can in
addition to file="file.mos" have executeCall=foo() and editCall=bar(). Both of these calls
the given function instead of running the file, and editCall allows the caller to modify the
function arguments before calling the function.

These commands are added to the Command menu when the model is active. An annotation
of the following form is used:

annotation(Commands(file="file.mos" "Script to ...",
file="file_ppt" "PowerPoint presentation ..."));

The directory where the model was found is used in front of the file-name. Mos-scripts are
run everything else is opened. Note: Running a script does not perform cd to its directory,
thus the script cannot run other local scripts, i.e. a full path to such script is needed.

You can also specify that commands are part of check.

™ Promptfor arguments

v Execute when checking package

Check has been extended with a drop-down list to select if you also want to run such
commands and simulate any model with stored experiment setup.

Z- - e > m
Normal
With simulation

Simulation windows

Dymola has new separate command window with a package browser.

36

Dymola Command window

Packages

Wi odelica Reference

[*odelica
Unnamed

BunScript ("c: fdymolafinsert fdymola.mos", true);
= true
= trues

BunScript{"C: flocuments and SettingsflagfApplication DatafDynasimfsettings mos", true);
= true

Selecting Window/New Command Window displays the new command window.

Wiindow g
Maode 3
Wiew »
Tools 3

T Library window

T Crvrnola Window

The Window menu has a new command “Tools” which makes it easy to select which
browsers and toolbars should be visible. For example, this makes it possible to display the
diagram layer of a model in Simulation mode.

Improvements in interactive functions

Possible to trace function execution using the built-in function
trace(variables = false,statements = false,calls = false,
onlyFunction = "");

This will optionally trace values of assigned variables, executed statements, calls of the
function, and can optionally be overridden for a specicific function. Calling trace with
default value for onlyFunction overrides the trace-settings for all functions.

Edit Function Call added to context menu of command input line.
Additional function arguments:

simulateExtendedModel

RECENT FEATURES IN DYMOLA 37

autoLoad=true. If false the result file is not loaded in the plot-window (and variables are
not replotted).

initialized
isInitialized=true. If false it will initialize according to the initial equations at the start of
the simulation.

listand variables

Possible to write the variables to a script-file (which can be executed)
filename="script.mos", and limit it to certain variables by using variables={"varl","var2"}.

Can specify a model-name with modifiers for translateModel, simulateModel, etc. e.g.

for source in {"Step","Constant™”,Ramp',"Sine"} loop
simulateModel ("'TestSource(redeclare

Modelica.Blocks.Sources. "+source+" Source)');

end for;

Minor improvements

Many minor improvements, in particular

e Performance of when and sample in certain cases

e Global common sub expression elimination is performed for scalar functions.
e Solving of ill-conditioned linear systems

e Improvements necessary to generate efficient code for Modelica.Media.

e Automatic differentiation and partial derivatives of Modelica functions. For analytic
Jacobians see section ‘Analytic Jacobians’ on page 62, please contact Dynasim for
further information on partial derivatives.

e The possible number of external objects has been increased.

Improved robustness of non-linear solver:

o [Initial equations automatically use a homotopy-method to handle difficult cases.
e Automatic test of non-zero start-values in non-linear systems.

e Special handling of scalar systems.

e Improved diagnostics.

Improved behavior and diagnostics for non-linear solver.

Improved debug-facilities while dymosim is running:

e Can enable logging of non-linear systems of equations.

e Can interrupt during initialization.

38

New tab for selecting logging of Debug information in the Simulation/Setup menu. These
correspond to the debug-facilities while dymosim is running, but are easier to access. For
details, see the tool tips.

Experiment Setup

General llranslalion lgulput -‘ lgnmpiler lﬁeallime l
General simulation debug information

v Mormal warning messages

I Settings included in translated model

Ewvent logaing
I Ewvents during simulation
I Ewvents during initialization

Manlinear solver diagnostics
I Monlinear zolution

I Monlinear iterations

I Details

State variable logging

I “Which states that dominate enar
I Dwnamic state selection

I Final zelection of states

ak | Store in model Cancel

The "continue" command has been extended in the menu to also allow continue from an
arbitrary point in a result file (from the same model).

Improved initialization and extended support for mixed equation systems.

Find in log-windows, see context menu or use Control-F.

Improved event handling

o Full support of smooth

o Fewer events generated

Improved handling of tables:

e Table editor has load/save buttons for Matlab files, CSV-files (for Excel), and Text-files.

e Matlab-routines for easier construction of 2-dimensional, load2DTable.m,
save2DTable.m, and n-dimensional, loadNDTable.m save2DTable.m files.

e The n-dimensional routine works in combination n-dimensional table lookup model,
TableND. The file is found in Dymola/Modelica/Library/TableND.mo, and will later be
integrated into the Tables-library.

RECENT FEATURES IN DYMOLA 39

Diagram layer in simulation mode

The diagram layer representing the model is available in Simulation mode to enable the user
to follow a simulation by displaying variables and to control it by setting parameters. The
user can descend into any level of the model in order to plot or display variables. Push the
diagram layer button to show the diagram.

The context menu for a component contains the choice Show Variables, which opens the
plot selector for the selected component instance.

robot - Modelicaadditions.MultiBody .Examples.Robots.r3.robot (Read-Only) 10| x|

Eile Edit Simulakion Plot Animation Commands Window Help

sEcs ¥[|h «»s@AE -Be vrol 6B ER [ELE

-0 X
Vables © Ve =l (mriot1] -loix]

Er3kator robot. asizd.r3dotor s i
Lk

-

1D

Hi_ref
Hflatige_nakor
HoutPort_w

H outPort_phi
ENSD " Diagram JEIE
i =]
.

n
inFart
[iff

[H power
[Femf
HLa
E
[+
a

0.0s

E
E
E
£

) i k={i}
integratorfirtegratar2 -~ k1 r3Cartral vIhitom rSGEQ stat_es

)’|>°’ [S:l 1 Parameters. ..
L 't Show Companent

Open Class in Mew Window

tIRa
HRd2

ar v
4 | k|

Aftributes...

Adwanced |

Info

|_|.-_|||uu|ﬂ|g = é

When double-clicking on a component or selecting Parameters... in the context menu the
parameter dialog is displayed.

40

CoupledClutches - Modelica.Mechanics.Rotational.Examples.CoupledC

File Edit Simulation Plob Animation Commands indow Help

=19l x|

(e E Q@[N[% ¢« > =EHABE= =l

IE=2X [B n

4> W

Jd

=10/

Wanables 5 | Ya s
ldsres 1 Mo J2w J3w
-[ireqHz I_ Dicg o _|ol x|
72 —
E Il = 34 in Modelica.Mechanics.Rotational.Examples.t i |
Bl
[+ltarqu |
Blclute - _Companent lcon
[+ zin N M
[Hlstepl ame I Inertis
B2 Camrnent I é_JZI
FHclute]
FJ3 —Model = w
FHelite Path Modelica Mechanics Rotational. Inertia 8
HJ54D Comment 10-rotational component with inertia
|:| —Parameters
flar J | 1 v kgm2 Moment of inertia
Eflar
ful
0
0
1 |]
Advanced

‘_[=]Modeling I W Simulation I/

2

Changing parameters in the parameters dialog does not always require a new translation (it
is still necessary if the modifier is too complex, the parameter had been evaluated during
translation, or if parameters of a different model were changed). The model is changed and
you will be asked to save it when exiting Dymola. To use this for top-level parameter see
section ‘The graphical editor has been improved to better support editing and browsing of

large complex models.

Parameter dialog’ on page 9.

Improved experiment setup

The experiment setup can be stored in the current model using the button "Store in model".
This applies to the General and Output tabs. When the model is later selected, these settings
appear in the experiment setup dialog and can be changed before simulation.

A set of new inline integration methods have been introduced for real-time simulation. The
following selector is available under the real-time tab and as the built-in variable, Integer

RECENT FEATURES IN DYMOLA

41

Advanced.InlineMethod:

0: Inline integration method not used
1: Explicit Euler

2: Implicit Euler

3: Trapezoidal method

4: Mixed explicit/implicit Euler

5: Implicit Runge Kutta

The order of the Implicit Runge Kutta method can be set between 2 and 4:
Integer Advanced.InlineOrder=2 "Order of Implicit Runge Kutta method (2-4)"

More information about real-time simulation can be found in the report "Dymola
Application Note HILS".

Output of manipulated equations in Modelica format

Description

The result of translating a Modelica model can be listed in a Modelica like representation.
The listing is stored in the file dsmodel.mof and is meant to be a more readable version of
dsmodel.c. The listing is enabled by ticking "Generate listing of translated Modelica Code in
dsmodel.mof" in the Model translation tab of Experiment Setup.

Experiment Setup

Dtput Debug Compiler | Bealtime

Model translation
[] Evaluate parameters to reduce models (mproves simulation speed).
[] Use new state selection (can give dynamic choices).
] Generate listing of flat Modelica code in .mof file.
Generate listing of translated Modelica code in dsmodel mef.
[] Include & variable for elapsed CP U time during simulation.
Wam about parameters with no defautt.

The listing may be useful for users who want to investigate algebraic loops or for other
debugging purposes. It gives the correct computational structure including algebraic loops.
However, to make it more readable some optimization steps such as elimination of common
subexpressions are not done.

It means that Jacobians of algebraic loops are by default not listed, because without common
subexpression elimination those expressions may be very long. Listing of the non-zero
Jacobian elements may be enabled by issuing the command

Advanced.OutputModel icaCodeWithJacobians = true.

42

Information on this is included in the listing if there are algebraic loops.

Listing of eliminated alias variables may also be long. Thus, the listing of these variables is
not enabled by default. The listing of alias variables is enabled by setting the flag

Advanced.OutputModelicaCodeWithAliasVariables = true
Information on this is also included at the end of dsmodel.mof, if listing of alias variables is
not enabled.

Below some examples are given for illustration.

Examples

Below, some examples will be given to illustrate and to discuss the information given by
dsmodel.mof.

e Simple LC circuit is a first example to discuss the organization of the manipulated
equations and listing of alias variables

o Two resistors connected in series illustrates symbolic solution of a linear algebraic loop
o A simple resistor network illustrates a manipulated linear system for numeric solution.

e Diode circuit with two valued resistance diode model introduces mixed discrete/real
algebraic loops

o Diode circuit with diode exponential diode model introduces nonlinear algebraic
loops

Simple LC circuit

Consider a simple electric LC circuit with two resistors connected in series.

T o P)
5 = AN N
|]
(D5
€/
a)
QR —
o 0) —
ST =

-
5

Translating the model produces a dsmodel.mof file with following contents.

RECENT FEATURES IN DYMOLA 43

// Translated Modelica model generated by Dymola from
Modelica model
// OutputModelicaCodeExamples.SimpleLC_Circuit

// Initial Section
Vs_signalSource._pi := 3.14159265358979;

G.p-v = 0;
L.n.v = 0;
Vs.n.v = 0;
/) -
// Bound Parameter Section
Vs.signalSource.amplitude := Vs.V;
Vs_signalSource.fregHz := Vs.freqHz;
Vs.signalSource.phase := Vs.phase;
Vs_signalSource.offset := Vs.offset;
Vs.signalSource.startTime := Vs.startTime;
/)
// Dynamics Section
R2_p.v := Vs.signalSource.offset+

(if time < Vs.signalSource.startTime then 0
else Vs.signalSource.amplitude*
sin(6.28318530717959*
Vs_signalSource.fregHz*
(time-Vs.signalSource.startTime)
+Vs_signalSource._phase));
Rl1.v = R2.p.v-C.v;

// Linear system of equations
// Symbolic solution
/* Original equation

R1.R*C.n.i1 = -Rl.v;
*/
C.n.i := -R1.v/R1.R;

// Torn part
// End of linear system of equations

// Linear system of equations
// Symbolic solution
/* Original equation

C.C*der(C.v) = -C.n.i;
*/
der(C.v) := -C.n.i/C.C;

// Torn part
// End of linear system of equations
R2.v = R2.R*L.1i;
L.v = R2_p.v-R2.v;

// Linear system of equations
// Symbolic solution
/* Original equation
L.L*der(L.i) = L.v;
*/
der(L.i) = L.v/L.L;

/7/

44

// Torn part
// End of linear system of equations

// Conditionally Accepted Section
Vs.p.i = C.n.i-L.i;
G.p-1 = Vs.p.i-C.n_i+L.1i;

// Eliminated alias variables
// To have eliminated alias variables listed, set
// Advanced.OutputModel icaCodeWithAliasVariables
// = true
// before translation. May give much output.

The manipulated equations are sorted into sections. First, there are calculations of constants
and bound parameters. These parts are only executed at initialization. Then the calculation
of outputs and the derivatives of the continuous time states follow. The output and dynamics
sections are executed during continuous integration. In the general case there is then a
section titled Accepted Section. It includes codes for detecting discrete event and updating
discrete states that need not be evaluated at continuous integration. This section is executed
at the end of each step to check for events. The output, dynamics and accepted sections are
executed at event propagation also. Finally, there is the Conditionally Accepted Section. It
includes calculation of variables which are not necessary to know when calculating
derivatives or updating discrete states. This section is executed when storing values. In some
situations for example when simulating on a HIL platforms where only states and outputs
may be visible, the conditionally accepted section is not executed at all.

As shown by the listing, Dymola converts this problem symbolically to explicit ODE form
(no algebraic loops to solve numerically). We can observe that Ohm’s law of the resistor R1
is used to solve for the current through the resistor:

C.n.i := -R1.v/R1.R;

On the other hand, Ohm’s law of the resistor R2 is used to solve for the voltage drop across
the resistor :

R2.v = R2.R*L.i;

The sorting procedure of Dymola automatically finds which variable to solve for from each
equation.

Connections between non-flow connectors result in simple equations, vl=v2. A connection
between two flow connectors gives vl+v2=0. Dymola exploits such simple equations to
eliminate variables. The listing of these variables is not enabled by default as indicated
above because it may give much output. If we enable the listing of alias variables by setting
the flag

Advanced.OutputModelicaCodeWithAliasVariables = true

the last part of the listing becomes

// Eliminated alias variables
R2.p.1 = L.i;

RECENT FEATURES IN DYMOLA 45

Ri.1 = -C.n.i;
R2.n.v = L.v;
Rli.p.i = -C.n.i;
R2.n.1i = -L.i;
L.p.v = L.v;
Vs.n.i = -Vs_p.i;
Rl.n.i = C.n.i;
C.i = -C.n.i;
R2.1 = L.i;

C.p-.v = C.v;
Vs_.1 = Vs_p.i;
C.p-i = -C.n.i;
L.p-i = L.i;

Vs.p.v = R2.p.v;
Vs_signalSource.y = R2_p.v;
L.n.i = -L.i;

Two resistors connected in series

Consider a simple electric circuit with two resistors connected in series.

R1 R2
=1 =1

D
+
:

After elimination of alias variables, the problem has a linear algebraic loop with three
unknowns. Dymola solves this symbolically as seen from the following excerpt from the
dsmodel.mof .

// Linear system of equations

// Symbolic solution

/* Original equation

R1.R*R1.i = R1l.v;

*/

R1.1 = Vs.v/(R1.R+R2_.R);
// Torn part

R2.v := R2.R*R1l.i;

R1.v = Vs.v-R2.v;

46

// End of linear system of equations

The equation
R1.1 = Vs.v/(R1.R+R2.R);

reveals that the resistance of two resistors connected in series is the sum of the resistances of
the two resistors. Dymola “discovered” this law automatically.

A simple resistor network

Consider a simple resistor network.

R1

Qs 2] [z
G

After elimination of alias variables the problem has a linear algebraic loop with five
unknowns. Dymola reduces it to a linear problem with two unknowns as seen from the
following excerpt from the dsmodel.mof.

// Linear system of equations

// Matrix solution:
/* Original equations:

R1.R*R1.n.i = -R1l.v;
R2.R*R2.p.i1 = R3.v;
*/

// Calculation of the J matrix and the b vector,
// but these calculations are not listed here.
// To have them listed, set
// Advanced.OutputModel icaCodeWithJacobians =
// true
// before translation. May give much output,
// because common subexpression elimination is
// not activated.
x = Solve(d, b); // J*x = b
{R3.p-i, R2.p.i} = x;

// Torn part

Rl.n.i := -(R2.p.i+R3.p.1);
R3.v := R3.R*R3.p.i;
R1.v = Vs.v-R3.v;

// End of linear system of equations

RECENT FEATURES IN DYMOLA 47

To make the listing more readable, some optimization steps such as elimination of common
subexpressions are not done. It means that Jacobians of algebraic loops are by default not
listed, because without common subexpression elimination those expressions may be very
long. As described above the listing of the non-zero Jacobian elements is be enabled by
issuing the command

Advanced.OutputModel icaCodeWithJacobians = true

The manipulated linear system is now output.

// Linear system of equations
// Matrix solution:
/* Original equations:

R1.R*R1.n.i = -Rl.v;
R2_R*R2.p.i = R3.v;

*/

J[1, 1] := -(R1.R+R3.R);
J[1, 2] := -R1.R;

J[2, 1] := -R3.R;

J[2, 2] := R2.R;

b[1] := -Vs.v;

x := Solve(d, b); // IJ*x = b
{R3.p.i, R2.p.i} = x;
// Torn part

Rl.n.i := -(R2.p.i+R3.p.1);
R3.v := R3.R*R3.p.i;
R1.v = Vs.v-R3.v;

// End of linear system of equations

Please, note that all element of the J matrix are non-literal expressions. Elimination of
variables must not introduce divisions by zero. If we would like to use the first remaining
equation to solve for the first unknown, R3.p.i , we need to divide by J[1, 1] = -
(R1.R+R3.R). Since it cannot be guaranteed that this expression always is non-zero, it is not
a good idea to use this equation to eliminate R3.p.i . Thus to use an equation to eliminate a
variable safely, its coefficient must be a non-zero numeric value. Since the Jacobian above
has no numeric elements, it is not possible to eliminate variables further. We need to invert
the matrix. It is indeed possible to do that for a two by two matrix and Dymola does it in
some situations when generating simulation code for real-time and HIL simulation.
However, in normal cases Dymola generates code for numeric solution, because it is allows
better support of singular systems.

Diode circuit with two valued resistance diode model

Consider a simple electric circuit with a diode and a resistor connected in series.

48

SA
T=d
Td

D

G
Let the diode be modeled by the model
Modelica.Electrical .Analog. Ideal . IdealDiode.

It models the diode characteristic as a conductance in off mode and a resistance in leading
mode. Thus in each of the two modes the problem is linear. There is an algebraic loop with
five unknowns of which one of them, namely D.off, is a Boolean variable. The algebraic
loop is a mixed system with one Boolean equation and four real equations.

// Mixed system of equations
// Linear system of equations
// Symbolic solution

/* Original equation

D.v = Vs.v-R1l.v;

*/

D.s = (Vs.v-(R1.R*D.Goff*D.Vknee+D._Vknee)) 7/
(R1.R*(if D.off then D.Goff else 1)
+(if D.off then 1 else D.Ron));

// Torn part
D.i := D.s*(if D.off then D.Goff else 1)
+ D.Goff*D.Vknee;
Rl1.v := R1.R*D.1i;
D.v = D.s*(if D.off then 1 else D.Ron)
+ D.Vknee;
// End of linear system of equations

// Torn discrete part
D.off = D.s < 0;
// End of mixed system of equations

Dymola solves such a system by iterating. Assuming the Boolean variable to be known and
removing the Boolean equation, the rest is a linear problem with four real unknowns. As
seen, Dymola solves the linear part symbolically. During simulation, Dymola iterates, if the
assignment D.off := D.s < 0 changes the value of D.off.

Diode circuit with exponential diode model

Let us revise the diode circuit above to use the diode model

RECENT FEATURES IN DYMOLA 49

Modelica.Electrical .Analog.SemiConductors.Diode
D

P
+

Its diode characteristic is nonlinear, with exponential terms. There is a nonlinear algebraic
loop with three unknowns.

// Mixed system of equations

// Nonlinear system of equations
// 1t depends on the following parameters:

// D.lds
// D._Maxexp
// D.R

// D.Vt

// R1.R

// 1t depends on the following timevarying

// variables:

// Vs.v

// discreteexpr_0.

// Unknowns:

// Rl.v(start = 0)
algorithm // Torn part

D.v = Vs.v-Rl.v;

D.i := (if discreteexpr_0.then

D. Ids*(exp(D-Maxexp)*
(1+D.v/D.Vt-D.Maxexp)-1)
+D.v/D.R
else D.lds*(exp(D.v/D.Vt)-1)+D.v/D.R);

equation // Residual equations

0 = R1.R*D.i-R1.v;

// Non-zero elements of Jacobian

J[1, 1] := (-1)-
(if discreteexpr_0.then
D. lds*exp(D.Maxexp)/D.Vt+1/D.R
else D.lds*exp(D.v/D._Vt)/D.Vt+1/D.R)*R1.R;

// End of nonlinear system of equations
// Torn discrete part

discreteexpr_0.:= D.v/D.Vt > D._Maxexp;

// End of mixed system of equations

Dymola reduces it to a nonlinear problem with one iteration variable, namely
Rl.v(start = 0)

50

The start value is included in the listing, because the nonlinear solver will use it. The diode
model includes also an if-then-else expressions, where the condition, D.v/D.Vt > D.Maxexp,
refer to one unknown, D.v, of the algebraic loop. Dymola introduces an auxiliary variable
named “discreteexpr 0.” for the condition. This transformation removes a possible
discontinuity from the real part of the problem.

Discriminating start values

When there are nonlinear algebraic loops, the nonlinear solver will use the start values of the
iteration variables. The possibility of converging to a solution may depend critically on the
quality of these start values. The quality of start values may vary considerably between the
unknown variables. When it is possible to select between start values, the “best” start value
should be chosen.

Dymola has taken the approach to consider a literal start less confident than a literal
expression. When defining a basic quantity type or very generic model components, start
values, if set, are typically given a numeric value. For example the start value of a pressure
variable may be set to 10° Pascal. In a well-designed model library such as the Modelica
Standard Library, the full-fledged components allow the user to specify initial conditions in
a flexible way, typically by setting of parameters. These parameters are used to specify hard
initial conditions (fixed=true or to control initial equations). However, the parameters are
also used to specify start values when fixed=false. Thus, such a start value should be a more
reliable estimation of the correct value, than a literal value set on a very general level.

Let us consider the situations where Dymola can select between start values. The very first
situation is elimination of alias variables. A connection between non-flow connectors gives
an equation vl= v2. A connection between two flow connectors gives vl+v2=0. Dymola
exploits such simple equations to eliminate variables. In this elimination procedure Dymola
keeps the start value.

The sorting procedure of Dymola finds the minimal loops, which means that the sorting is
unique and such a loop cannot be made smaller by sorting the variables and the equations in
another way. It means that the set of intrinsic unknowns of an algebraic loop is well-defined.
In order to obtain efficient simulation, it is very important to reduce the size of the problem
sent to a numerical solver. Dymola uses a tearing approach to “eliminate” variables. The
numerical solver is only made aware of the remaining variables, the iteration variables, call
them z. A numerical solver provides values for the z variables and would like to have the
residuals of the remaining equations calculated. The tearing procedure has produced a
sequence of assignments to calculate the eliminated variables, v, assuming z to be known.
The start values of the eliminated variables have no influence at all. An aim is of course to
make the number of components of z as small as possible. It is a hard (NP-complete)
problem to find the minimum. However, there are fast heuristic approaches to finding good
partitions of the unknowns into v and z. In order to get good start values for the numerical
solver, Dymola tries first to eliminate variable with less reliable start values.

As for usual or iteration variables of nonlinear system of equations, the plot browser
provides support for setting start values interactively. If the start value of the unknown is
bound to a parameter expression, then setting any of the parameters appearing in the
expression will of course influence the start value. If no start value is given or if it is a literal

RECENT FEATURES IN DYMOLA 51

number, then it is possible to set it interactively. In the plot browser, click on Advanced, and
then click the button labeled, v(y~, and the interactively setting is enabled.

Setting

Advanced.LogStartValuesForlterationVariables = true;

before translation, will make Dymola produce a listing of all iteration variables and their
start values.

Example

Consider the following example intended to illustrate both the improved heuristics and
setting start-values:

model NonLinear
Real x(start=xStart);
Real y;
Real z;
parameter Real xStart=1;
algorithm
x:=(y+z)+time;
algorithm
X:=(y+z)"2;
equation
0=y-z;
end NonLinear;

Note: Using algorithm in this way for actual models is not good since Dymola manipulates
algorithms less and thus algorithms often lead to harder numeric problems (larger system of
equations, no analytic Jacobian, no alias elimination between and y and z). Rewriting them
as equations would be a good idea.

Translating this model gives a prompt for initial values:

Variables Values Unit Des:
=linitial values
[IxStart 1
Advanced]
S N

Enabling guess values (v¢~) gives the prompt

52

Variables Values Unit Des

Slinitial values

Oz 0

[xStart 1
[Advanced l
[s][Hg= ” o~ l

Setting ‘z’ to 1 generates another solution for this non-linear system of equations.

Bounds checking for variables

Bounds checking for variables can be used to ensure that the solution is not only a numerical
solution to the equations, but also satisfies additional bounds to and thus is physically
correct.

Consider the following model where a length-constraint should be satisfied and the length
shall be positive:

model LimitProblem
Real length(min=0);
equation
length”2-length=1;
end LimitProblem;

This equation has two solutions: -0.62 and 1.62. However, the solution at -0.62 does not
satisfy the min-value. By enabling min/max assertions in Simulation/Setup/Debug (and
allowing an error of le-6) it is guaranteed that an unphysical solution is not found and
instead the physically correct solution at 1.62 is found.

MinfMax assertions
v All variables
v Mon-linear iterations variables
Allowed error |‘|e-DDS

Note that types in Modelica.SIunits contain min-values, and thus by using Modelica.SIunits
some min-values are automatically applied. However, based on the actual model it might
make sense to add stricter limits.

Traceback message for errors in functions

When an error occurs in a function call it is important to know in which instance of the
function that caused the problem. Consider the following simple model.

RECENT FEATURES IN DYMOLA 53

Step1l MyF1 MyF3

— >——> >
startTime=.2
Clockl MyF2 MyF4
\ P———p >——p >
startTime=0

Each of the blocks contain the same function call, and in case one of them fails it is
important to understand which one. This problem can be even more pronounced in larger
models.

model MyF
extends Modelica.Blocks. Interfaces.SI1SO;
function f
input Real Xx;
output Real y;
algorithm
assert(x<2, "Cannot be larger than 2'");
yIi=x*x/(1+x);
end T;
Real x;
equation
der(x)=u;
y=Ff();
annotation (uses(Modelica(version="2.2")));
end MyF;

model WhichOne
import Modelica.Blocks.Sources;
MyF MyF1l annotation (extent=[-20,20; 0,40]);
annotation (Diagram, uses(Modelica(version="2.2'")));
Sources.Step Stepl(startTime=.2, height=4)
annotation (extent=[-60,20; -40,40]);
Sources.Clock Clockl annotation (extent=[-60,-20; -40,0]);
MyF MyF2 annotation (extent=[-20,-20; 0,0]);
MyF MyF3 annotation (extent=[20,20; 40,40]);
MyF MyF4 annotation (extent=[20,-20; 40,0]);
equation
connect(Stepl.y, MyFl_u)
annotation (points=[-39,30; -22,30]);
connect(Clockl.y, MyF2_u)
annotation (points=[-39,-10; -22,-10]);
connect(MyF2_.y, MyF4._u)
annotation (points=[1,-10; 18,-10]);
connect(MyFl1.y, MyF3.u)
annotation (points=[1,30; 18,30]);
end WhichOne;

This model fails to simulate because of the assertion in f, but which of MyF1.f, MyF2.f,
MyF3.f and MyF4.f is violating the assertion?

The log-message contains

Assertion failed: x < 2

The following error was detected at time: 0.7000000000000001
Cannot be larger than 2

The stack of functions is:

MyF._f

MyF . f(MyF1.x)

Integration terminated before reaching "StopTime"™ at T = 0.7

This clearly shows MyF1.f caused the error.

Note: Due to alias elimination the variable will in some cases not be the exact same variable,
but can be an identical variable in the same or a connected sub-system.

This is active as default but it is possible to de-activate this additional diagnostics, since it
adds to the size of the generated c-code and is only interesting if the model fails in some
function.

Direct link in error log to variables in model window

When looking at the error message for the WhichOne-model there is a tooltip for the
component as follows:

Aszsertion failed: x « 2
The following error was detected at time: 0.7000000000000001
Cannot be larger than 2

The stack of functions is:

MyF.f

MyF.f (MyFl.x)

Integration terminated before reaching "StopTime™ at T = 0.7

CPU—timElContext menu link: MyFl.x! : 0.015 seconds
CPU-time TOTr ONc interval: 0.429 milli-seconds

Right-clicking on MyF1.x brings up the context-menu:

Assertion failed: x « 2
The following error was detected at time: 0.7000000000000001
Cannot be larger than 2
The stack of functions is:
MyF.f
MyF.f (MyF1
Integratio Copy Ctri+C g "StopTime™ at T = 0.7
CPU-tim Select Al Ctrl+a . 015 seconds
CPU-tim .429 milli-seconds
Humker Find Ctrl+F
Humber
Humber of F-ewvaluations E .x(Dedamtbn]
Humber of Jacobian-evaluations:

Selecting MyF1 in this menu highlights the MyF1 component in the diagram:

RECENT FEATURES IN DYMOLA 55

Step1 MyFA1 MyF3

il

startTime=.2

Clock? MyF2 MyF4

| N —

startTime=0

The intention of highlighting the component is that an error can be due to the component
itself, the parameters, or the interaction with connected components. By highlighting the
component it is easy to investigate these.

Clicking on the last part (.x) brings up the text-layer of the component, and searches for the
declaration of ‘x’.

The function part of the function call has a similar link to the function.

Extended online diagnostics for non-linear systems

When a simulation is slow it can be due to the non-linear systems of equations in the model.
This is especially the case if the simulation is not yet started and the problem occurs for the
initial equations.

As a contrived example consider:

model SlowNonLinear
Real x[10];
function multiplySlowly
input Real x[:];
output Real y[size(x,1)]1;
algorithm
Yi=X;
for 1 in 1:1000000 loop
yi=XxX+ty;
end for;
end multiplySlowly;
equation
multiplySlowly(x)=ones(size(x,1));
end SlowNonLinear;

Running this and pressing Ctrl-c at the start gives:
Log-file of program dymosim
(generated: Wed Dec 21 11:59:03 2005)

dymosim started
- "dsin.txt" loading (dymosim input File)

56

In non-linear solver after 11 function evaluations:

x[10] = O

x[9] = 9.99999E-007
x[8] = 9.99999E-007
x[7] = 9.99999E-007
x[6] = 9.99999E-007
x[5] = 9.99999E-007
x[4] = 9.99999E-007
x[3] = 9.99999E-007
x[2] = 9.99999E-007
x[1] = 9.99999E-007

CPU-time for integration .55 seconds
Number of result points

Number of GRID points

Number of (successful) steps
Number of F-evaluations

Number of Jacobian-evaluations:
Number of (model) time events :
Number of (U) time events
Number of state events
Number of step events
Minimum Integration stepsize
Maximum integration stepsize
Maximum integration order

Integration status probed at T = 0

cNeNololoNoNoNolNoNoN Nel V)

By pressing Ctrl-C twice instead of once the simulation is stopped and the user is
additionally prompted for further commands:

Enter command: continue(c), quit(q), stop non-linear with
diagnostics(s), log event(le), log norm(In), log
singular(Is)=log & allow singular systems log
iterationsnonlinear(li), log debugnonlinear(ld), log
resultnonlinear(lr)

Logging command syntax: log event true, log norm false, and log
norm reset

The last three log-commands correspond to the setup in Simulation/Setup/Debug/Non-linear
solver diagnostics (iterationsnonlinear=Nonlinear iterations, debugnonlinear=Details,
resultnonlinear = Nonlinear solution). To log all subsequent non-linear iterations write:

log iterationsnonlinear true
continue

To stop the simulation give the command ‘quit’ instead. The quit-command generates the
same diagnostics as if the non-linear system of equations did not converge.

RECENT FEATURES IN DYMOLA 57

Extended diagnostics for stuck simulation

When a simulation is stuck (or progressing very slowly) it is important to provide some
form of simple diagnostics.

As an example consider the following example:

model StuckSimulation

Real x(start=0.5);
equation

der(x)=if x>0 then -1 else 1;
end StuckSimulation;

This model is a classical example of chattering after 0.5 seconds (when x has reached zero)
since the derivative of x is -1 for positive x and +1 for negative x.

Such models can occur when manually writing e.g. friction elements such as clutches
without a stuck mode (use Modelica.Mechanics.Rotational.Clutch). Adding ‘noEvent’
around the if-expression is not a solution.

Diagnostics for example

Running this with Isodar/dassl gives a very slow progress, and it thus seems best to press
‘Stop’. This terminates the simulations and gives a log with:

Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by
Dynasim))
Integration terminated before reaching '"StopTime"™ at T = 0.5

WARNING: You have many state events. It might be due to
chattering.

Enable logging of event in Simulation/Setup/Debug/Events
during simulation

CPU-time for integration : 9 seconds

Re-running and pressing ctrl-c in the dymosim-window gives a message:

Integration status probed at T = 0.5004871181

WARNING: You have many state events. It might be due to
chattering.

Enable logging of events by pressing ctrl-c twice and then:
log event true
continue

Enabling the logging in one of these ways gives a large number of messages of this type:

Expression x > 0 became false ((X)-(0) = -3.93213e-013)
Iterating to find consistent restart conditions.

during event at Time : 0.5000000000003932
Expression x > 0 became true ((xX)-(0) = 1e-010)
Iterating to find consistent restart conditions.

during event at Time : 0.5000000001007865
Expression x > 0 became false ((x)-(0) = -1.0025e-010)

58

Iterating to find consistent restart conditions.
during event at Time : 0.5000000003010365

The ‘x’ variables in the log are links as described in the section ‘Direct link in error log to
variables in model window’.

By using a fixed-step solver, euler, the simulation runs to completion, but there is still
chattering and thus the warning-message is given at the end of the successful simulation.

Fast sampling

Another cause for slow simulations is that the model contains sampling at a high speed.

As an example consider

model RapidSampling
Real x;
equation
when sample(0, l1le-6) then
x=pre(x)+1;
end when;
end RapidSampling;

Running this with dassl/Isodar generates the diagnostics:

Integration terminated successfully at T = 1
WARNING: You have many time events. This is probably due to
fast sampling.
Enable logging of event in Simulation/Setup/Debug/Events
during simulation
CPU-time for integration : 57.1 seconds

The simulation does not stop because of this, but especially for a larger system it will be
slower than normal, and can be a cause for concern. If the simulation is acceptably fast there
is no need to enable the logging and investigate it further.

Using fixed-step-size solvers such as Euler does not generate any diagnostics, since running
a sampled system with a step-size corresponding to the sampling rate is normal and not a
cause for concern.

Ensuring that ‘Stop’ stops the simulation

Simulations normally run to completion, but in some cases it is necessary to stop the
simulation — either because the setup was incorrect (e.g. stop time 1el0 instead of 10) or
because the simulation is progressing too slowly.

Simulations are normally stopped in a nice way in order to ensure that the user gets a
complete result file including diagnostics (see ‘Extended diagnostics for stuck simulation’).
However, in extreme examples a model might be stuck in an infinite loop.

Consider a user writing a variant of the rem-function in Modelica (the intention is that ‘x’
should be a sawtooth-shape), but mixes up plus and minus:

RECENT FEATURES IN DYMOLA 59

model ReallyStuckSimulation
Real x;
algorithm
X:=time;
while x>0.2 loop
X:=x+0.2; // Subtract offset.
end while;
end ReallyStuckSimulation;

Running this example gives a stuck simulation after 0.2 seconds, and the user should
therefore press the red Stop-button highlighted below:

ReallyStuckSimulation - ReallyStuckSimulation

Fle Edit Simulation Plot Animation Commands Window F

sHQE N € 3|00% H» Q.

x| |

After waiting for a half a minute the simulation-process (dymosim) will be terminated. The
waiting period is used to ensure that the dymosim-process is terminated in a nice way if
possible, even for larger examples.

New integration algorithms

In Dymola a new set of integration algorithms has been added. We will here present the
algorithms and their advantages in order to allow you make a better choice, both between
them and compared to the traditional ones. The main user-benefit is better restart after
events, the addition of non-stiff integrators with variable step-size, and solvers better suited
for badly damped stiff systems (i.e. with poles close to the imaginary axis).

The new algorithms are included in the integrator setup making it straightforward to switch
between the traditional dymosim integrators and the new ones (marked with order and the
methods applicable to stiff systems are marked with ‘stiff” — the first one is ‘Radau ...”).

Imtegration
Algorithm Radau lla - order 5 stiff w
Tolerance Dassl A
Euler
Fixed Intearator Step | Ridncg
Ridd
Rhdfied

:Radau |la - order 5 stiff

Esdirk23a - order 3 stiff

Esdinc34a - order 4 stiff
Esdirk45a - order 5 stiff
Dioprid5 - order 5 "

60

Changing between the new solvers and the normal solvers will cause a recompilation (but
not a complete retranslation). Linearizing a model will use the dymosim-solvers and might
thus cause a recompilation. For a user this implies that one should preferably select the
integration algorithm before pressing ‘Translate’ (or start by pressing ‘Simulate’).

Overview of the new algorithms

The new algorithms (as well as the remaining traditional methods described in the dymosim-
chapter of the manual) support the entire range of events present in Modelica models, i.e.
state events, time events, and dynamic state selection. The table below gives their
characteristics (the combo-box contains the same information).

Method Order Stiff
Radau Ila 5 Yes
Esdirk23a 3 Yes
Esdirk34a 4 Yes
Esdirk45a 5 Yes
Dopri45 5 No
Dopri853 8 No
Sdirk34hw 4 Yes
Cerk23 3 No
Cerk34 4 No
Cerk45 5 No

Variable (or adaptive) step-size implies that the algorithm adapts the step-size to meet a
local error criterion based on the tolerance.

One-step (or Runge-Kutta) methods are basically designed such that they start fresh on
every step and thus the cost of restarting them after an event is substantially reduced
compared to multi-step methods such as Isodar (implementing Adams-methods) and dassl
(implementing BDF-methods). However, even if the methods are one-step methods the
implementation often uses more information from the previous step.

Fixed order mean that you manually select the method including order (where higher order
should be used for stricter tolerance) instead of the solver automatically adapting the order
as for Isodar and dassl.

Dense output implies that the method can handle state events efficiently and also produce
evenly spaced output. The dense output has traditionally been added as an afterthought to
the methods. Good exceptions are the cerk-methods, where the method coefficients were
optimized including the dense output.

RECENT FEATURES IN DYMOLA 61

Most of the solvers are stiff-solvers indicating that they are suited for stiff systems, i.e.
systems where the fastest time-scale in the model is substantially faster than the interesting
dynamics.

The new stiff algorithms are also designed to be A-stable, i.e. stable for all stable linear
systems. This means that the methods are better suited for badly damped stiff systems (i.e.
with poles close to the imaginary axis). Furthermore, since they start with higher order they
are more suited for systems with discontinuities or events.

Analytic Jacobians

For non-linear systems of equations it is possible to avoid numeric Jacobians and instead
rely on Dymola to automatically differentiate the functions. Compared to writing derivative
functions this is much easier for the modeler, easier to understand for the user, and also
considerably less error-prone.

In order to enable Dymola’s automatic differentiation feature, the modeler writing functions
must declare the smoothness of the function by providing a smoothOrder-annotation
corresponding to the smooth operator in Modelica. A basic limitation of automatic
differentiation is that it can provide a derivative even at points where the function does not
have a derivative. Verifying that a function with branches (if-statements, if-expressions, or
while-statements) is continuous is a difficult problem. The person providing the
smoothOrder-annotation is guaranteeing that the function is at least that smooth. When
using the function, its derivative is only constructed if it is found to be needed because of
index reduction or to generate an analytic Jacobian.

The basics of automatic differentiation and the implementation choices in Dymola are
discussed in H. Olsson, H. Tummescheit and H. Elmqvist: “Using automatic differentiation
for partial derivatives in Modelica”, Proceedings of the 4" International Modelica
Conference, Hamburg-Harburg, Germany, 2005, pp. 105-112.

Example

We will use a simple function that just inverts a strictly positive number for illustration:

function MyDivision
input Real x;
output Real y;
annotation (smoothOrder=1000);
algorithm
assert(x>0, "x should be positive');
y:=1/x;
end MyDivision;

We then write a simple model where this function must be differentiated in order to solver a
non-linear equation:

model TestDivision3
Real x;

equation
MyDivision(x)=1+time;

62

end TestDivision3;

Translating this example gives a translation log with

Sizes of nonlinear systems of equations: {1}
Sizes after manipulation of the nonlinear systems: {1}
Number of numerical Jacobians: 0O

An analytic Jacobian is constructed and used since needed. The derivative function is:

function P._TestDivision3._MyDivision:derf
input Real x;
protected
Real y;
public
input Real x_der2;
output Real y der2;

algorithm
assert(x > 0, "x should be positive™);
y_der2 = -x_der2/x"2;

annotation (smoothOrder=999);
end P.TestDivision3.MyDivision:derf;

Removing the smoothOrder-annotation instead gives

Sizes of nonlinear systems of equations: {1}
Sizes after manipulation of the nonlinear systems: {1}
Number of numerical Jacobians: 1

Commands and Scripting

It is possible to use command line arguments when starting Dymola, for example by making
a short cut and associate either a mo- or mos-file. After Dymola has started a mos-file is
executed by RunScript() or a mo-file is handled by openModel().

The command File / Recent Files shows a submenu for the most recently opened model files
or executed scripts during the current Dymola session. The content of File/Recent Files is
saved between Dymola sessions.

I n

Recent Files :DevTestComples) Comples., o

Exit C:/DevTestlengine/engine. mo
1 /DewTestColidef/contact. mo
C:/DevTest/NewMops/Opk3. mo

i /DewTest/NewMopsMops. mo
C:/DevTest/Block/PTZ2.mos

Possible to include calls to scripts and opening of documents in menu Commands

RECENT FEATURES IN DYMOLA 63

Commands Window Help

Script ko ..

E PowerPaint presentation ...

Command File / Save script to save various settings in a script. The command log can be
saved. Alternatively switch settings, plot and animation setup, and variables can be saved.
Either all variables or only parameters and initial values of states can be saved either as
specified initial values or as the final values after simulation.

Dymola: Save Script

Store zcript for
[] Command log
[] Plat setup
[Animation setup
[] Seftings [e.g. translation settings)]
‘Wariables

Stare variables at
® Initial
() Final

Stare which variables

(%) Parameters, and states

O Al

Alzo include

[] Simulation setup

Store in model ag command: | |

It is possible to specify that the generated script shall be callable from the Commands menu
associated with the current model, see section ‘Commands menu’ on page 36.

Selecting models in File/Demo does no longer change current directory.
Import statement can be used on command line.

import Modelica.Math.*
= true

sin(l)

= 0.841470984807897

Redeclaration of size for variables in work space allowed.

a=1:10
Declaring variable: Integer a [10];

a=1:20
Redeclaring variable: Integer a [20];

New built-in functions to write to log window: Utilities.ModelicaMessage("message");

Plotting and animation

Variable browser context menu

The top-level nodes in the variable browser represent simulation result files; other nodes
represent the component hierarchy and variables and parameters at the lowest level. The
variable browser has a context menu with several important operations.

ariable B
Wariahles Walues |tk
= CoupledClute] S
[freqHz .2 |Hz
0712 Open Al s
713 Close 95
FJ1 Save As...
Htorque Zlose Result
Fclutchl Animate
Hzin
+lztenl

The first three choices are available for all nodes in the variable browser.

e Clicking on a “+” opens one more level of the tree. The “Browse” operation opens two
levels, which makes the model structure clearer without creating a huge browse tree.

e The “Open All” operation opens every sub-node in the browse tree. Large sub-trees may
become very large and hard to navigate.

[T

e Clicking on will close a node. The “Close” operation will close all nodes in the
browse tree. The difference is that the next time you open the node, all nodes will be
closed.

The last three commands in the menu are only available for top-level (result file) nodes.

e The “Save As” operation allows the user to save the result file in several different file
formats. It is possible to either store the whole result file, or just those signals which are
currently plotted.

e The “Close Result” operation will delete the result file from Dymola and free the
occupied storage space.

e The “Animate” operation will animate the data in the selected result file. This operations
requires that an animation window is open and that the result file contains animation data.

RECENT FEATURES IN DYMOLA 65

The “Save As” operation can store data in several different formats.

File nane: | hd

|F|esu|t files [mat] ﬂ

Save as hupe:

Comma separated walues - only plotted [* osy "=t
td atlab file - only plotked [mat)
All Files(™")

First, data can be stored as Dymola result files (.mat format), as text, or as comma-separated
values (suitable for Microsoft Excel and other applications).

e Comma separated values: For use in e.g. Excel
Note: some versions of Excel uses the Regional Setting of List Separator when reading
CSV-files, please set this to ','

e Matlab-format: easy to use in Matlab and can also be re-opened as a result in Dymola

The file types marked with “only plotted” will only store the signals which are currently
plotted.

Display units

It is possible to change the display unit of a signal in the plot window, for example from Pa
to MPa or from rad/s to rpm, if suitable unit conversions have been defined. Changing the
display unit for a signal will change the display unit for all signals in the diagram with the
same display unit. Diagram tooltips show units.

After a signal has been plotted, the display unit can be changed in Plot/Setup. The display
unit is chosen from a list of known derived units. The display unit must be changed for each
plotted signal. The last selected display unit becomes the default display unit when another
signal with the same fundamental unit is plotted.

Fropertiez
Unit 1adds Dizplay unit | rpm -
irirniim [EEE]
Yertical 28,5517 95,493
Harizontal 1} 1

Unit conversions and the initial default display unit can be specified in command scripts as
needed. For example,

defineUnitConversion(*'Pa™, "MPa', le-6, 0);
// scale and offset
defineDefaultDisplayuUnit(*'Pa™, "MPa');
// use MPa by default

66

The set of common unit conversions which are used by default can be found in
dymola/insert/displayunit.mos. Additional US unit conversions are defined in
dymola/Zinsert/displayunit_us.mos; which are used by default can be changed
in dymola/insert/dymola.mos.

Other plotting

The command plotArray(), which is used to plot data computed in functions or scripts, has
been extended with new parameters.

X X-values

y Y-values

style 0 Style of plotting (default automatic)

legend "" | Legend describing plotted data (default none)
id 0 Identity of window (default 0 means last)

The resolution has been improved for plotted variables which are copied to clipboard with
File/Export/To Clipboard or printed on high-resolution printers.

Some programs (for example Microsoft Word 97) may have problems when high-resolution
plots are pasted. We suggest using Edit/Paste Special and selecting Enhanced Metafile
Format. It is possible to set the resolution for high-resolution printing or export to clipboard.
The variable is called Advanced.ClipboardResolution; default is 600 dpi. It is also possible
to export low-resolution plots in Dymola by setting Advanced.PrintLowRes =
true; this will print and copy the plot window using screen resolution, which is compatible
with earlier versions of Dymola.

Derivative variables look smoother in plots. Plotting of derivative-variables when using the
Euler method is no longer influenced by interpolation for finding events. This improvement
is only needed for plots and not for the actual solution.

Animation

Direct manipulation of the view in the animation window using the mouse has been
implemented. The view can be panned, rotated and zoomed using mouse movements in
combination with meta keys:

Operation Meta key Mouse move

Pan view none Up/Down/Left/Right
Rotate around x-axis Ctrl Left/Right

Rotate around y-axis Ctrl Up/Down

Roll (rotate around z- Ctrl+Shift Clockwise/Counter-
axis) clockwise

Zoom in/out Shift Up/Down

Zoom in/out none Wheel

In addition, arrow keys pan and tilt in fixed increments of 5 degrees, page up/down tilt 45
degrees. The “Home” key resets viewing transformation.

To better support model portability, dxf-files are found relative to the directory of the
current model.

RECENT FEATURES IN DYMOLA 67

Texture mapping for animation objects is supported. Please contact Dynasim for more
information. Example of animation window:

Welcome to
Dymola
Testing Center

Matlab and Simulink

Matlab 7.1 (R14SP3) is supported.
Dymola now generates Simulink S-function level 2 (unless you are using Matlab 5).

The library annotation for external functions is automatically used also in Simulink. For
those who have worked around this in other ways it can be turned off using

Advanced. IncludeLibrariesForSimulink=Ffalse;

Support for compiling models with dSpace release 4.2.

Dymola-generated models can be run on two more realtime platforms: ADI SimSystem and
ETAS LABCAR.

Libraries

Modelica Standard Library version 2.2

Version 2.2 is backward compatible to version 2.1.
Modelica.Blocks has revised table blocks to avoid multiple allocations of table space.
Modelica.Mechanics.MultiBody has been revised. See MSL 2.2 Release Notes for details.

The following new libraries have been added:

68

Modelica.Media - Property models of liquids and gases, especially 1241 detailed gas
models, moist air, high precision water model and incompressible media defined by tables.
The user can conveniently define mixtures of gases between the 1241 gas models. The
models are designed to work well in dynamic simulations. They are based on a new standard
interface for media with single and multiple substances and one or multiple phases.

Modelica. Thermal.FluidHeatFlow - Simple components for 1-dim., incompressible
thermo-fluid flow to model coolant flows, e.g., of electrical machines. Components can be

connected arbitrarily together (= ideal mixing at connection points) and fluid may reverse
direction of flow.

Modelica.Electrical.Digital - Digital electrical components based on 2-,3-,4-, and 9-valued
logic according to the VHDL standard

Modelica.Electrical.Machines - Asynchronous, synchronous and DC motor and generator
models. The example shows a permanent magnet synchronous induction machine with

Rampd :

=

[=])

_/__"/ '
[y

[y

=]

duration=t... i

Star2 I
D—< Loadinertia Targuestegt
m=m *;& 5—@
e tim
o J=J_Load QF

ShPRDT

Modelica.StateGraph - Modeling of discrete event and reactive systems in a convenient
way using hierarchical state machines and Modelica as action language. It is based on
JGraphChart and Grafcet and has a similar modeling power as StateCharts. It avoids
deficiences of wusually wused action languages. This library makes the

ModelicaAdditions.PetriNets library obsolete. The example shows the controller for a tank
system.

RECENT FEATURES IN DYMOLA 69

makeProduct
=1 start level2 = 0.001

1] 0

T |—Iv3us...res... T2
| L

-
wE

dojs
start

32 TS emptyTanks TG
1] 0

shiut levvell + lenvel2

Modelica.Math.Matrices - Functions operatinng on matrices such as solve() (A*x=b),
leastSquares(), norm(), LU(), QR(), eigenValues(), singularValues(), exp(), ...

Modelica.Utilities - Functions to operate on files, streams, strings and support for
operations in the operating system

Comparison to Modelica Standard Library 1.6

Modelica 2.1 and 2.2 are major changes with respect to 1.6 (and previous) versions of the
Modelica Standard Library, because many new libraries and components are included and
because the input/output blocks (Modelica.Blocks) have been considerably simplified:

e An input/output connector is defined without a hierarchy (this is possible due to new
features of the Modelica language). For example, the input signal of a block "FirstOrder"
was previously accessed as "FirstOrder.inPort.signal[1]". Now it is accessed as
"FirstOrder.u". This simplifies the understanding and usage especially for beginners.

o De-vectorized the Modelica.Blocks library. All blocks in the Modelica.Blocks library are
now scalar blocks. As a result, the parameters of the Blocks are scalars and no vectors
any more. For example, a parameter "amplitude" that might had a value of "{1}"
previously, has now a value of "1". This simplifies the understanding and usage
especially for beginners.
If a vector of blocks is needed, this can be easily accomplished by adding a dimension to
the instance. For example "Constant const[3](k={1,2,3}" defines three Constant blocks.
An additional advantage of the new approach is that the implementation of
Modelica.Blocks is much simpler and is easier to understand.

All components of the ModelicaAdditions library are included in the Modelica Standard
Library in an improved way:

e ModelicaAdditions.Blocks is included in Modelica.Blocks. The logical blocks have a
nicer icon layout now.

70

e ModelicaAdditions.Tables is included in Modelica.Blocks.Sources and
Modelica.Blocks.Tables.

e ModelicaAdditions.MultiBody is obsolete and is replaced by the much more powerful
library Modelica.Mechanics.MultiBody (this is version 1.0.1 of the MultiBody library
where the signal connectors have been changed to the new signal connectors).

e ModelicaAdditions.HeatFlow1D is obsolete since a long time. It was replaced by the
improved library Modelica. Thermal.HeatTransfer.

e ModelicaAdditions.PetriNets is obsolete and is replaced by the much more powerful
library Modelica.StateGraph.

When opening models built using early versions of the Modelica Standard Library, the
following dialog is shown. Click on “Add Uses” to update the model so this dialog is not
shown in the future.

Dymola x|

= This model did not specify which version of Modelica it uses,
and Dymola assumes that it should use wersion 1.6,

Add Uses I D Mok Add Uses Zancel |

Other libraries

Modelica Reference documentation as a package. See the package browser.

~#¥Modelica Reference
| H#BClasses

{ I EBFunctions

! 4B 0perators
EBbreak

i #Mconnect

Library Modelica_LinearSystems is a free Modelica package providing different
representations of linear, time invariant differential and difference equation systems, as well
as typical operations on these system descriptions.
See the Users Guide inside the package for details.

The package “DataFiles” has been updated with functions to write and read CSV (comma
separated values)-files. CSV-files are for example, generated amd read by MS Excel. The
function DataFiles.readCSVmatrix("fileName") reads the data into a matrix skipping the
first line if containing textual legends. The data can be separated by tab, semicolon or
comma.

RECENT FEATURES IN DYMOLA 71

Library handling improvements

If the string SDYMOLA/Modelica/Library is not found in MODELICAPATH it is added
first (and not last). The environment variable MODELICAPATH specifies a semi-colon
separated list of directories where packages will be searched for.

The handling of conversion to Modelica 2.2 (and also other conversions) has been
substantially improved:

e See separate document for more information.

e Sources with vector arguments automatically converted to array of components.

e Automatic save a script for conversion of models using the converted package (when
converting a package with its own version number).

e Can convert a. inPort.signal[1] toa.u,and a. inPort._signal to {a.u}.

e The conversion script for Modelica 2.2 has been improved.

LAPACK library for GCC and Visual C++ (required by packages Matrices and Sampled).

Installation and setup of Dymola

Dymola can be installed in directories with spaces, for example Program Files. If the default
working directory “dymola/work” is not writeable for the current user, Dymola will instead
start in the directory “Dymola” in the user’s “My documents” folder (the “Dymola”
subdirectory will be created if it does not exist). Please note that this cannot be an UNC-path
(i.e. \\server\...).

If dymola/tmp is not writeable for the current user, Matlab/Simulink compilation will still
work but all files will be recompiled. In combination with the change for compiler setup this
means that users do not need write-access to the Dymola installation directory.

The Dymola 6 executable is now called dymola.exe, and the version number is removed
from several files (including this one). The Simulink interface starts Dymola 6.

The setup for compilers has been redesigned and more compilers are supported. Dymola
dynamically recognizes Visual C++ compilers (no need to install them before Dymola).

e Microsoft Visual Studio 6
e Microsoft Visual Studio .NET 2002 and 2003

e Microsoft Visual Studio .NET 2003 Toolkit. This is a free compiler for Windows 2000
and Windows XP, which can be downloaded from
http://msdn.microsoft.com/visualc/vetoolkit2003.

72

http://msdn.microsoft.com/visualc/vctoolkit2003

The selected compiler is stored as a per-user setting and for the future kept for new
installations of Dymola. Switching compiler does not modify dymola/bin.

Experiment Setup

General Tranzlation Output Debug | Realtime
Compiler
() Geo compiler

() Microsoft Visual C++
() Watcom C/C++ 114

Mote: Microzoft Yizual C++ and W atcom are optional compilers which may
ot be inztalled on pour spstem.

Yigual C++ wergion
() Wisual Studio B
Yisual Studia MET 2002 [7.0]
() Wisual Studio .MET 2003 Toolkit [7.1)
Yisual Studia MET 2003 [7.1]
(") Custom

DDE
[] Wisual C++ with DDE

Werify compiler setup

Performs geveral tests to ensure that the generated C code can be compiled.

’ Werify

I ak.] [Store in model l ’ Cancel

Dymola displays a specific diagnostic message when the user runs Microsoft Windows
Terminal Services, which for security reasons is not supported.

Dymola supports external C libraries on Linux. Classes which contain “Library” annotations
to link with external libraries in C are supported on both Windows and Linux.

RECENT FEATURES IN DYMOLA 73

Modelica Data Structures and
GUI

Modelica Data Structures and GUI

In addition to primitive data types, Real, Integer, Boolean and String and from them derived
types, Modelica has records and arrays. We will in this section show how to build graphical

user interfaces for models and functions that correspond to these data structuring
mechanisms.

Records and dialogs

As an introductory example, we will consider making a small data base of personal data.
Assume that each person is described by the following information:

record Person
String firstName;
String middlelnitial;
String lastName;
Integer number;
String street;
Integer zipCode;
String city;

end Person;

The corresponding automatically constructed GUI dialog for entering data looks as follows:

MODELICA DATA STRUCTURES AND GUI 77

Records.Person

Perzon]

[nputs

firzth anne |

middel Skring firstMame
|aztM ame

rmber

strest

zipCode

v v v W w w v

ity

] Info Copy Call Execute Cloze

The tool tip shows the data type of the input field.

Entering the following data:

Records. Person

Perzon]

[nputs

firzth amne | “og' e
rniddlelnitial | b
|azth ame | "Smith' »
rumber | 123 »
ghreet | "tain Street' »
zipCode | 45673 »
ity | "Mew Citg™ »

k. [ifia Copy Call Execute Claze

and pressing the “OK” or “Execute” buttons gives the result in the log window as a call to
the record constructor Records.Person with the name-value pairs for the entered data.

Records.Person(
firstName = "Joe",
middlelnitial = "M",

78

lastName = "Smith",
number 123,

street ""Main Street",
zipCode = 45678,

city = "New City"

)

If we would not fill in any value for middlelnitial, the following error message would be
generated:

No Value Given Pz|

& Must supply walue Far argument middleInitial

To avoid having to give such data, a default value can be given in the declaration:

Strlng middlelnitial = «”;

Modelica allows you to add description strings to all variables:

record Person2
String firstName "First name";
String middlelnitial="" "Optional middle initial";
String lastName "Last name";
Integer number "House number';
String street 'Street name";
Integer zipCode "Zip code";
String city "City name';
end Person2;

These are used to annotate the dialog as shown below.

MODELICA DATA STRUCTURES AND GUI 79

Records.Person?

Person2 l
[nputs
firztt ame | “Joe" » Firgt name
riddlelritial | ¥ Optional middle initial
laztM ame | "Smith'' » Last name
rrmber | 123 » Houze number
street | "Mairn Street'" » Strest name
zipCode | 45673 v Zipcode
ity | "Mew Cip" » City name

] Info Copy Call Execute Cloze

Tabs and Groups

It is possible to annotate input fields in various ways in order to simplify for the user to enter
data.

It is, for example, possible to group record fields together and introduce tabs in the dialog by
means of annotations.

80

Records.Person3

Perzon3 l Properties]
Marne
firzth ame | "Joe" » Firgt name
rniddlel ritial | | » Optional middle initial
laztM ame | "Smith'' » Last name
Address
rrnber | 123 v House number
street | "Main Street' » Street name
zipCode | 45673 » Zip code
ity | "Mew City" » City name
] Info Copy Call Execute Cloze

These changes are made by adding the following annotations and extending the record with
field married.

record Person3
String firstName "First name"
annotation (Dialog(group="Name'™));
String middlelnitial="" " Optional middle initial”
annotation (Dialog(group="Name'));
String lastName "Last name™
annotation (Dialog(group="Name'));
Integer number "“House number®
annotation (Dialog(group="Address'));
String street 'Street name™
annotation (Dialog(group="Address'));
Integer zipCode "Zip code™
annotation (Dialog(group="Address'));
String city "City name"
annotation (Dialog(group="Address'));
Boolean married "Marital status”
annotation (Dialog(tab=""Properties"™, group="Marital
status™));
end Person3;

Note, that for the Boolean field married, the combobox with choices false and true appear
automatically.

MODELICA DATA STRUCTURES AND GUI 81

Labels and layout

By annotating a field, such as firstName, with the attribute joinNext=true, the next field,
middlelnitial, is put on the same horizontal line as firstLine.

Instead of having the variable name in front of the input field, the description string is used
if the Dialog annotation: descriptionLabel=true is given. The description string is then not
shown after the input field. A label with free text can be given by label="free-text”. The free
text label has precedence over the description label.

The width of the inputs fields can be specified as, for example, naturalWidth=10. The width
is given in the unit "en", the width of character '0'. The width can also be specified as
absoluteWidth=10. The difference is that fields with absoluteWidth keep their size when the
entire dialog is made wider. The fields with naturalWidth specification are made wider.

By use of these annotations we can make the dialog much nicer.

Records.Person4 @

Persond lF'ru:uperties]

Mame

Firzt name ¥ Middle initial I_r Last narme 3

Address

MHurnber

Postal code r LCity name | 3

¥ Sheet name| 3

k. [ifia | Copy Call Execute Claze

The details of the record declaration is given below:

record Person4
String firstName "First name"
annotation (Dialog(group="Name"™, joinNext=true,
naturalWidth=15, descriptionLabel=true));
String middlelnitial="" "Middle initial"
annotation (Dialog(group="Name", joinNext=true,
absoluteWidth=3, descriptionLabel = true));
String lastName "Last name"
annotation (Dialog(group="Name™, naturalWidth=25,
descriptionLabel = true));

Integer number "‘Number"
annotation (Dialog(group="Address", joinNext=true,
absoluteWidth = 10, descriptionLabel = true));

82

String street 'Street name™
annotation (Dialog(group="Address", descriptionLabel
= true));
Integer zipCode "Zip code or postal code"
annotation (Dialog(group="Address", joinNext=true,
absoluteWidth = 10, descriptionLabel = true,
label="Postal code'™));
String city "City name"
annotation (Dialog(group="Address",
descriptionLabel = true));

Boolean married "Marital status"
annotation (Dialog(tab=""Properties",

group=""Marital status', absoluteWidth=10));
end Person4;

Alternative forms for input fields

Sometimes there is a set of frequent input values (enumerations) and in addition free text
should be possible. For such cases, it is possible to add a combo box for the frequent choices.
This would, for example, be convenient for a sex field:

Integer sex "'Sex"
annotation (Dialog(tab=""Properties"™, group="Sex"),
choices(choice=1 "Male'", choice=2 "Female'));

Associated with each value (1, 2), it’s possible to give a description string (“Male”,
“Female™).

The Properties tab has the following layout after this addition.

MODELICA DATA STRUCTURES AND GUI 83

Records.Person3

Person? | Properties

Sexr

TEN ﬂh Sex

b arital =

married | Female bal status
] Info Copy Call Execute Cloze

In the case of only a set of fixed choices, radio buttons are more appropriate. Specification
of sex can, for example, be made by radio buttons by adding radioButtons=true, i.e. if the
following declaration is given:

Integer sex "'Sex"
annotation (Dialog(tab="Properties’™, group="Sex'),
radioButtons=true,
choices(choice=1 "Male'™, choice=2 "Female'));

Use of enumeration types would have been more appropriate instead of Integer. However,
Dymola does not support enumerations yet. Boolean variables such as

Boolean married "Marital status”
annotation (Dialog(tab=""Properties",
group="Marital status'));

give by default a combo box with choices false and true. However, in many cases a check
box is more convenient. This is achieved by adding checkBox=true, i.e. be giving the
declaration

Boolean married "Marital status"
annotation (Dialog(tab=""Properties",
group=""Marital status'), choices(checkBox=true));

By adding these declarations for sex and married

Integer sex "'Sex"
annotation (Dialog(tab="Properties', group="Sex",

84

compact=true, descriptionLabel = true),
choices(choice=1 "Male", choice=2 "Female",

radioButtons=true));

Boolean married "Married"”
annotation (Dialog(tab="Properties",
group=""Marital status",

compact=true, descriptionLabel = true),
choices(checkBox=true));

including compact=true to move triangle closer to the input field, we obtain the following
dialog layout:

DataandGUlsamples.Persond

Person5 | Properties
Sex
Sex i~ Male i Female »
Marital status
Mamied [»
OK i | Copy Call | Ercule Close

lllustrations and formatting in dialogs

To make it easier to understand the meaning of input data, it’s possible to associate a picture
with a Group:

MODELICA DATA STRUCTURES AND GUI 85

Records. TestGroupPicture

TeztGroupPicture l

[Eroup picture

affset » Dffzet of output zignal
hieight J Height of ramps

ztartTime b = Output = offzet for time < startTime

duration ¥ = [Dwration of ramp

k. Tyl{u] Copy Call Esecute Cloze

The record declaration including the annotation to specify the file name of the picture is
shown below:

record TestGroupPicture

Real offset=0 "Offset of output signal”
annotation(Dialog(group="Group picture'™));

Real height=1 "Height of ramps"
annotation(Dialog(group="Group picture™));

Modelica.Slunits.Time startTime=0
"Output = offset for time < startTime"
annotation(Dialog(group="Group picture'™));

Modelica.Slunits.Time
duration(min=Modelica.Constants.small) = 2
"Duration of ramp"
annotation(Dialog(group="Group picture'));

annotation (Images(Parameters(group="Group picture",
source="ramp.png™)));
end TestGroupPicture;

The description texts and labels may contain HTML formatting tags if the text string is
enclosed in <html> ... </htmI>. The example below shows some of the possibilities.

86

Records. TestHTML

TestHTML]

| nputs

format ¥ |t iz pozsible to format dezcription; =, Iarger, color

o

. and alzo include line
plcture k

b uzeother font=s and even uze greek characters: o

breaks and pictures & it the description

k. Tyl{u] Copy Call Execute Cloze

The corresponding record declaration is given below:

record TestHTML
Real format
"<html>1t is possible to format description:
x², larger,
color </html>";
Real alpha
"<html>use other <font face=\"Courier New, Courier,
monospace\''>fonts and even
use greek characters: α</html>"
annotation(Dialog(label="<html>α</html>"));
Real picture
"<html>and also include line
 breaks and
pictures
<imgsrc=\"C:/Dymolaswork/colorfill_png\"> in
the description</html>";
end TestHTML;

Greek symbols can, for example, be found at:

http://www.htmlhelp.com/reference/html40/entities/symbols.html

Declare variable dialog

It is possible to introduce groups and tabs in the Annotations tab of the Declare variable
editor for the fields firstName, middlelnitial and lastName. The rest of the fields are put in
the group Address:

MODELICA DATA STRUCTURES AND GUI 87

http://www.htmlhelp.com/reference/html40/entities/symbols.html

Declare variable

Declaration Type Prefis |

Evaluate Hide Farameter dialog placement [] Graphical information

(& Defaul (& Default Tab Etent []
O on oo Group Rotation |
© od 210 Enable

Modelica: |3" annotation [Dialoglgroup="Mame", joinM ext=true, natural#/fidth=20, descriptionLabel=true]) ,‘|

[ok][Cancel

l

This Declare variable editor is reached through Edit/Variables... or, after

enabling non-

graphical components in the Component browser, using the Parameters... from the context

menu.

Specialized GUI widgets

Declarations of variables can be annotated to provide a convenient user interface, for
example to select models or to open files. These annotations are typically used to give inputs

to functions or for creating records. The dialog is annotated with edit buttons:

Examples. FileData

FileD ata |

InpLts
tranzlatebd odel | | »
fileM ame | | »
zavefile | | »
matFile | | »
cavFile | | »

I QK.] ’ Info] [Copy Call l [Execute l ’ Cloze]

Given the appropriate type definitions (see below), such a record is very easy to declare.

record FileData
Examples.TranslatedModel translateModel;
Examples.FileName fileName;
Examples.FileNameOut savefile;
Examples_MatFileName matFile;
Examples.CsvFileName csvFile;

88

end FileData;

A string type that presents a dialog for selecting a model is declared as follows:

type TranslatedModel=String
annotation(Dialog(translatedModel));

Pressing the edit button for such function argument displays this dialog:

Select model

Packages ~
= [Design
=]I Calibration
= [Examples

SimpleCar
[CJUtilties
] Intemal
[Expetimentation W

ak. I [Cahicel

The following declarations use annotations to display different kinds of file dialogs. The
first one gets a filename for reading a file:

type FileName=String
annotation(Dialog(loadSelector(Filter="Matlab files
(*.mat);;CSV files (*.csv)",caption="0pen experiment data

file™)));

The second one get a filename for writing a file:

type FileNameOut = String
annotation(Dialog(saveSelector(Filter="Matlab files
(*.mat);;CSV files (*.csv)",caption="Save experiment data

file™)));

Checking of input data

It is possible to declare parameters with minimum and maximum values, which are then
checked by Dymola when the user sets a parameter value. The variable is declared with type
and name as usual. Then press the edit button (right-arrow) and the end of the value field to
present a menu.

MODELICA DATA STRUCTURES AND GUI 89

Declare variable

Declaration | Type Prefix || Annotations |

Type and name ‘

| parameter v | [Real +|[p | 1] [1=]

i Edit Text
Description
| Copy Default

td odelic.a: |parameler Realp: |

[ok][cancal |

Select Edit from the menu and enter the min and max values for the parameter. Assuming
that we have specified the range to be [0, 10], the variable dialog shows

Declare variable

Type and name

| parareter v| |F|ea| v| |p | [| | 1= | [min=0, max=1 D]|>

Description

todelica: |parameter Real p [min=0, max=10] ; |

If we have a model with such a parameter and try to set a value outside of the valid range,
Dymola will display an error message. The parameter dialog cannot be closed until the
invalid modifier value has been corrected.

lllegal modifiers

Some of the given parameter
walues were illegal.

Literal walue for p greater than
max-value 10

Arrays of records

A simple address book can be created as an array of Person records as follows:

record Addresses
Person4 persons[:];
end Addresses;

The corresponding dialog for such an array of records is:

Records.Addresses

Addreszes
- persons
perzonz[1

B

perzons[3

]
]

Persond lPererties]
MHame

First name v Middle imitial | "' » Last name

Addresz

M umber

3 Streetname|
Postal code 3 Eit_l,lnarne|

o |

Info

Copy Call Execute

Cloze

It is also possible to view all person records at the same time by selecting the array "persons”
in the left tree browser:

Records.Addresses

Addreszes

- persons
perganz[1]
i perzonz[Z]
‘.. personz[3d]

PeErEons \

Rows |3

First name

tiddl| Last name

Mumber | Street name

1

"Joe

“Smith"” | 123

"Main Strest"

Ok | Info

Copy Call | Execute

MODELICA DATA STRUCTURES AND GUI

91

Visualize 3D

Visualize 3D

Introduction

Data visualization in 3D is an important way of representation, and it is adequate for
understanding and comprehending model behavior. Dymola 6 includes a new 3D graphical
tool: Visualize 3D.

Visualize 3D renders 3D scenes and has an associated Modelica package named Plot3D.
This new package manipulates and sends the graphical data representation of the scene to
Visualize 3D. This guide describes how to use Plot3D to obtain graphs and figures with the
Visualize 3D tool in Dymola.

VISUALIZE 3D 95

Packages
= [Plot3D
plotPloints
plotLines
plotStem
plotSurface
plotB arGraph
plotPieChart
plotHistagram
plotResult
inzertPointer
inzertlabel
InzertPrimitive
* [T Examples
[T Prirnitivess
* [T Records
H [T Types
* [T Intemal

The main functions are at top level of the package: plotPoints, plotlines, plotStem,
plotSurface, plotbarGraph, plotPieChart, plotHistogram, plotResult, insertPointer,
insertLabel and insertPrimitive. We recommend strongly using these high-level functions
instead of trying to use the low-level ones in Plot3D.Internal.

The subpackage Plot3D.Primitives contains the basic primitives preset. The subpackages
Records and Types also contain information about the internal representation of a 3D scene.
The subpackage Examples contains in its turn some of the examples presented here and we
will refer to them later on.

Visualize 3D supports several different types of plots and can be presented separately in
their own windows if desired, all integrated in the Simulation tab.

96

Visualizer [1] =) S
Visualizer [2] ‘L”E"il

,z;'

Visualizer [3]

Group A
Groups 5
G
Group O

32%

i | 8 Gendation |

Inserting and removing objects

Visualize 3D has several basic primitives that can be combined to construct more
complicated scenes. We will start by constructing a simple solid cylinder by combining a
cylinder shell with two disks. We start by using the function Plot3D. InsertPrimitive

VISUALIZE 3D 97

Plot3D - Plot3D - [Diagram]

@ Flz Edit Simulation Flob &nimation Cor

iFHQE N/ mey
'a sEr x

Packages
E[FPtaz

© plotPlaints
@ plotLines

@ platStem

@ plotSurface
@ plotBarGraph
@ plotPieChart
@ plotHistogram
@ plotResult

@ insertPainter

© insertlahel

[TJEamples

[T Primitives)
(=&]
x
Components
[Flatam

Click right on it and the following dialog will pop.

Plot3D. InsertPrimitive

IngertPrimitive | Tree data

objects

Inputs
T
Global ambient light [0.0..1.0]
Yisualize 30 window number

MaTranzsformation|] | »

0.6 [»
1

Initial Yiew Transformation

Lo JI

Info

| [comcan ||

Execute] ’ Cloze

l

The first element we observe is the View transform matrix, the global ambient light and
Visualize 3D window number. This number identifies the window we want to add some
primitive to. We keep the default values just now and click on “objects” field in the tree.
There we are to select the primitive forms to be added. Click now on the arrow of the combo
box and scroll down until “CylinderShell”.

98

Plot3D. InsertPrimitive

InzertPrimitive objects |

Fows |‘I

1

L. Axes

B Rectangle
W Box

i Disk

o Diskarc

i Sphere
- 1 CylinderShell
mm Cylinder
= ATTow

& Cone

¥

<

o | [CopCal][Eweous | [Clse |

We have now selected a cylinder shell and we can plot it with default values. Press Execute.
At first sight there is just an empty Visualize 3D window. Actually, we are looking at the
shell with zero thickness along its main axis. To realize this, press the Ctrl key and move the
mouse to rotate along the axes x and y. The figure below shows one possible view of the

new created cylinder shell.

Visualizer [1] FEx

The operation of Visualize 3D can be summarized in the following table

Operation Meta key Mouse move
Pan/Scroll none Left/Right/Up/Down
Rotate around x-axis Ctrl Up/Down

Rotate around y-axis Ctrl Left/Right

Rotate around z-axis Ctrl+Shift

Zoom in/out Shift

Up/Down

Clock-wise/
Counter clock-wise

Arrow keys
Left/Right/Up/Down
Up/Down

Left/Right
Left/Right

Up/Down or Wheel

VISUALIZE 3D

99

We can also perform other operations on the cylinder shell. Back to the dialog window, and
clicking on the edit icon, we get the following dialog window.

CylinderShell
B CylinderShel |
Diezcription
Cylinder surface
Irputs
T MoTransformation|) | ¥ Transformation of coordinate system for graphical object
length Tl# m Length extert of graphical primitive
width 1% m Width extent of graphical primitive
height T m Height extert of graphical primitive
colar {00,255} » Calar of graphical primitive
color2 {285,001 ¥ Secondary color of graphical primitive
atyle fill3.1.1] ¥ Style of plotting [)
colornterpolationDirection 0w |» Color interpolation direction
colordntensity 1 Intenzity color
specularColar 0.8 Specular color of material [0.01.0]
speculark #ponent 100 (> Specular exponent [zhininess) [0.0 128.0]
nu 2w Mumber of points for u.
e 40 |» Murmber of paints for v.
[ok J[mo |[Cose |

We observe different graphical properties of the cylinder shell primitive. We are now
interested in a few: matrix T, length, color, style, colorInterpolationDirection and
colorIntensity. Change colorInterpolationDirection to “x direction” and press execute once

more.
CylinderShell
== CylinderShel |
[rescription
Cylinder surface
Inputs
T MaTranzformation(] | > Transfarmation of coardinate spstern for graphical object
length 1% m Length estent of graphical primitive
width T1% m width extent of graphical primitive
height T1% m Height estent of graphical primitive
colar 10,0.255} » Color of graphical primitive
colar? 1256,0,0} » Secondary color of graphical primitive
style fill3.1.1] > Style of platting []
colorlnterpolationDirection IS Color interpolation direction
colorlnkenzity Irntenzity color
specularColor None Specular color of material (0.0 1.0]
specularE xponent — Specular exponent [zhininess) [0.0 128.0]
{0 v d!IECt!m Mumber of points for u.
Z direction .
e Mumber of points for v.
ok J[m][Close

100

Press control-key and move the mouse. The change is that Visualize3D interpolates the
color using the range of the x coordinate of the primitive.

Visualizer [1]

Changing the colorIntensity parameter it is possible to set the brightness of the color scheme
applied. This factor is to be in the interval [0,1]. Below we find depicted the cylinder shell
for intensityColor=0, 0.5 and 1.

Visualizer [1] EIE® Visualizer [1] EB visualizer [1] EEX

Remember that we are adding primitives; this means that if the intention is to change and
paint again, the Visualize 3D window has to be erased. This can be done by right clicking on
the window, the context menu opens and the selecting “Erasing window”, as below. This
operation will clean the window object list.

Visualizer [1]

Erase Selected Ojects
Change projection type
Reset
Print...

Export image as...

VISUALIZE 3D 101

The matrix T is used to perform transforms on just the associated object. Operations like
translation, scaling and rotation of the body respect to the global coordinate system are
described with this T matrix. These transforms are independent of the global view, and are
used to construct the 3D scene. Clicking on the combo box arrow shows the predefined
possibilities.

CylinderShell
== CylinderShel |
Drezcription
Cylinder surface
Inputs
T E L4 Transformation of coordinate system for graphical object
length - ¥ m Length extent of graphical primitive
width NaoTransformation > m idth extent of graphical primitive
height ;Iatnf:? > m Height extent of graphical primitive
okl
color Fotatey E ¥ Color of graphical primitive
color2 Fotates E ¥ Secondary color of graphical primitive
style Geale ¥ Style of plotting)
colorlnterpolationDirection Transfom ¥ Color interpolation direction
colorl ntenzity ¥ Intenzity color
specularColor ¥ Specular color of material [0.01.0]
specularE xponent ¥ Specular exponent [shininess] [0.0 128.0]
nu ¥ Mumber of points far u.
103 ¥ Mumber of points for v,
[ok][me [oo |

We can select NoTransform, Translate, RotateX, RotateY and RotateZ. They are fairly
described by their names. The most general of the operations is Transform, and involves a
combination of all the others.

The dialog window for “Transform” is the following

Transform in objects[1].T

Transfarm |
D escription
Transform coordinate spstem by Translate, Rotated, Rotate, RotateZ and Scale
Inputs

[¥ Tranglation in ¥ direction
ty ¥ Translation in'Y direction
tz » Translation in 2 direction
anglex * FRotation angle in degrees
angley * Rotation angle in degrees
anglez * Rotation angle in dearees
Y ¥ Scaling in ¥ direction
1] ¥ Scaling inY direction
32 * Scaling in Z direction

ok || e || Closs

102

Here we can describe what we want to do with the object. The order is important, since all
these operations are not commutative, for instance, it is not the same to rotate and translate
as to translate and then rotate. The order preset is scale first, rotate around Z, rotate around
Y, rotate around X and then translate.

Let us now add the top and bottom of the cylinder. Again in the dialog window, we change
the “CylinderShell” primitive to the “Disk” primitive.

Plot3D. InsertPrimitive

InsertPrimitive objects |

Rows [1 2l

1 v

| Axes

B Rectangle
W Box

|2

o Diskre

i Sphere

m CylinderShell
mm Cylinder

= AW

& Cone

i

Copy Call][Execute H

<

Infa

J

Cloge]

@ Disk |
Description
Dizk surface in 4y coordinate plane
Inputs
T m‘ » Transformation of coordinate system for graphical object
length 1| m Length extert of graphical primitive
width Tl m Width extent of graphical primitive
height 11 m Height extent of graphical primitive
color E ¥ Color of graphical primitive
calor2 ¥ Secondary colar of graphical primitive
shyle fil{2,1.1) > Syl of platting []
colorlnterpolationDirection 0 || Calor interpalation direction
colorintensity 1l Intensity color
specularColor 0.8 [» Specular color of material [0.0 1.0]
speculart xponent 10.0 [Specular exponent [shininess) [0.0 128.0]
nu 40 [Mumber of points for u.
v Bl Murmber of points far v.
ok [e [ome |

Change the color of the “Disk” by pressing the Edit icon, and then the Edit icon of the field
“color”. We choose in this case the red color to get a good contrast.

VISUALIZE 3D 103

Select color

[(5] [) o [o [|

Cusztorn colors

[o o g 0| Bet 255]
C LI IO IO IO I I Set [255 | Greem [0 |

Wal: Bilue: EI

Add to Custom Colors l

Define Custom Colors >

[ok || conce |

Press Execute and rotate once more using control-Key and moving the mouse. We observe
the following result.

Visualizer [1]

The disk is in the middle by default. We want to place the disks on top and bottom of the
cylinder shell. We will therefore erase the disk and place it correctly using the translate
transform. To erase an object, we have to select it first by clicking on it pressing Alt-key.
The selected object is delimited by a dotted box.

104

Visualizer [1]

Now we select from the context menu “Erase Selected Objects”, and the disk is erased from
the actual view.

Visualizer [1]

Change projection type
Reset

Print...

Export image as...

To close the cylinder shell, we have then to set the bottom disk at the point (0,0,-0.5) and
the top disk at (0,0,0.5), since the cylinder has length 1. Press again on the Edit icon of
“Disk”, then change “T” to “Translate” and set “tz” to -0.5.

Translate in objects[1].T |E|rg|

Translate |

Drescription

Translate object in ¥, v, 2 directions

Inputz
by ¥ Translation in ¢ direction
by * Tranglation inv direction
tz 0 Translation in Z direction
ok [e][oise

VISUALIZE 3D 105

Press Execute. Then change tz to 0.5 and press Execute again. We obtain now a closed
cylinder as below. We changed the color of top disk to yellow to show clearly the three

components.

CJE)X) Visuatizer [1]

Visualizer [1]

Visualizer [1] EEX

Here we see top, side and bottom of the newly created cylinder. The primitive

Plot3D.Primitives.Cylinder is constructed with this technique, encapsulating all necessary
steps to get a uniform color, size and other properties.

Basic primitives
The basic predefined primitives included in Plot3D are presented in the figure below.

Packages
& (] Primitives

A Tent

A PolyLine
" ParametricSurfacelbject
B Rectanale
B Box

i Dizk

* Digkare

i Sphers

m CylinderShell

m Cylinder

‘ Cone
e AT

|-i Ares

In the package Plot3D.Examples.Primitives, the functions BasicPrimitives] and

BasicPrimitives2 produce 3D scenes with the primitives.

106

= (] Examples
= ﬁ Prirnitives
B azicPrimitives1

B azicPrimitives?
|j Surfaces

Click right on BasicPrimitives] and then “Call Function ...”. Then, press Execute. The
resulting 3D scene is the following.

Visualizer [1] EI@|E|

Dynasi

Notice that the cylinder shell has no thickness. BasicPrimitives2 is another example showing
some of the features of Visualize 3D. Repeat for BasicPrimitives2 as before to get the
following 3D scene.

VISUALIZE 3D 107

Visualizer [1]

In particular, the third curve at the top line is a Lissajous curve, typically used in electronics
and electrotechnique to find frequency and phase of a unkwon sine curve, using a known
one as reference. If we observe now this curve along its z-axis, the result is the following.

The dialog windows of all primitives are very similar. Each one of them have inherent fields,
for instance, Plot3D.Primitives.Text has a String field called textString. In this case, the
label we want to render. The primitive Plot3D.Primtives.Axes is a very particular one, since
it produces a reference coordinate system. We will use it in the next section.

108

Surface Plots

Other important feature of Plot3D is the easy user interface and the inclusion of high level
help functions that will render surfaces, contour lines, water fall plots and bar graphs from
matrix data. In the following, the notation we use is as follows

1. The matrices Xx,y,z describing a parametric surface of the form
x="f(t,5),y=9(t,s),z=h(t.s) .

2. The matrices nx,ny,nz describing a vector field (17x.7y.7z) on the point (x,y,z).

We will consider three test cases with their respective plots:

2 2

e parabolic function z=1-x“-y“ on the interval [—1,1]x[-2,2]
xhds /1><2\ , y Axis
>

e hyperbolic function z = x2 +2xy on the interval [-3,3]x[-3,3]

2 Axis

T x Axis

VISUALIZE 3D 109

Pay?

2

e Dbivariate non-normalized Gaussian distribution z =e¢ on the

interval [-5,5]x[-5,5].

X Axis /,/\\ y Axis

z Axis

The function Plot3D.Examples.Surfaces.surfaceDemo runs all test cases. We will consider
two of them here and just show the rest. The functions Torus and Helix are further examples
of closed surfaces in different styles.

& [CJExamples
(] Frimitives
= [Surfaces
Surfacel emo
Toms

Helix

Let us plot the first test function. Execute the following command in the command window
to create the matrices X,y,z,nx,ny and nz

(xX,y¥,z,nx,ny,nz):=Plot3D.Utilities.SurfaceTestl1(25);

Now, click right on the function Plot3D.plotSurface. Click “Call Function ...” item. The
following dialog window appears

110

Plot3D. plotSurface

plotSurface plotSurface Tree data |
X Inputs
coordinateSystem]
Drrawv awis L/
Choose scale axis automatically >
platid [1]
QK l [Info] [Copy Call] [Execute] [Cloge]

In this dialog we can set whether we want the axes automatically constructed or not.
Furthermore, we can indicate a Visualize window number in “plotld”. Click now on
“plotSurfaces”. The following dialog pops

Plot3D. plotSurface

plotSurface

coordinates ystem

plotSurfaces ‘

Rows [1

platData

vectorField

styleD ata

1|

|ES] [temal. StyleD ataS urfacef] |

QK

I

Info

][Copy Call H Exgcute][

Close

]

To set the parametric surface matrices x,y and z we click on the edit icon of “plotData”. The
following window pops

VISUALIZE 3D

111

PlotData plotData

PlotD ata |
Inputz
#| =
vl yEE Y
z S=E
[ok J[we][oOmse |

The only needed to plot is to fill in the matrices. We write X,y and z in their corresponding
places and click OK. Then, back in the main Dialog, we click on Execute and obtain the

following plot.

EEX)

Visualizer [1]

z Axis

This is the default plot style (Filled with Mesh), and with default names for the X, Y and Z
axes. If we want to change the style of the plots, the data has to be filled in the “styleData”

field, using its Edit icon. The dialog follows

112

StyleDataSurface styleData

StyleDataSurface

Drescription
Specify ztyle of plot to perform

Inputs
General
Interpalation Direction (O Given color () = direction () ydirection (&) z direction Color of the Surface l:l
Line ‘idkh [1]r SpecularCoeflisient (Dto1) | 05[s Colorintensiy 0te1) [1> VeclorFisld [
Surface
Select Plot Siyle () None (O ‘wiretrame () Hiddenlines () Filled (%) Filled with Mesh
Lewvel Curves
Select Plat Style (%) Mone () Contour Lines () Contowr Lines XY

Level curves |:|> I aximum level l:l} Minirnum level l:|> Mumber of levels l:l»

Choose levels from vector [| Select Colormap (3 Mone () Gray Scale () Fed Scale () Green Scale () Blue Scale () Custom

Custom Calar map | |
' ater Fall
Select Plat Style (& MNone (O Water Fall () Water Fall Solid
ok [e [oess

We observe the different alternatives. We can combine independently four groups of data:
Surface (Wireframe, Hidden Lines, Filled and Filled with Mesh), Level Curves (Contour
Lines and Contour lines XY), Water Fall (Normal and Solid disks) and Vector field (check
box in General group). To change the axes properties, we click on “coordinateSystem” on

the tree. The following dialog window pops

Plot3D. plotSurface Elf'gl

plolSurface conidnateSystem |
plotSurfaces Description
Coordinate System
Inputs
Orisntation of coordinate system v
fis Label » xRange [min,max 1) » Enabled (O No (& Yes »
y Axis Label * yRange [minmax #) » Enabled (O No (2 Yes »
2 Ayiz Label * 2 Range [min.max.#) » Enabled (O Mo (&) Yes »
ok [e][coral | [Ewewe | [O

We observe here the fields “Axis label”, “Range” and “Enabled” for X,Y and Z axis.

Using the functions plotPoints, plotLines, plotStem, plotSurface and plotBarGraph follows

the same lines, with particular variations.

VISUALIZE 3D

113

We want to emphasize the combination of contour plots with Wireframe. This combination
is particularly interesting to show interesting features of a function. For instance, the contour
lines of the hyperbolic function z = X+ 2xy for z=0 yield two straight lines and

constitute a degenerated transition case between the hyperbolic lines in two quadrants
(above of z =0) and hyperbolic lines in the other two quadrants (below of z=0). The
resulting plot follows

Visualizer [1] EX

z Axis

Or easily viewed, projected on the XY plane without Z axis ticks

Visualizer [1] \;NEIEI

X Axis

-3 28 -2 415 1 05 0 05 1 15 2 25 3
L h i ;. L L 3

/)

— B

\
RSN

~2

y Axis

The black lines are the asymptotes of both sets of hyperbolic contour lines (red means z = 4,
green z =1, blue z=-1 and yellow z =4).

114

Other combinations can be useful to explain features too. For instance, when considering the
Gaussian bivariate probability distribution. If we integrate one of the variables (let us
integrate the y variable in this case) the resulting univariate function is also a Gaussian
distributed variable. Combining the “Rectangle on Top” with the “Rectangle” plots of
Plot3D.plotBarGraph function we can illustrate just that. The result follows.

Visualizer [1]

X Axis

y Axis

z Axis

EEX

The intersection of surfaces using Plot3D.plotSurface is also possible. The only thing we
have to do is to increment the number of elements to plot in the dialog. We can also set
color and style to identify easily the functions and delimit the intersection area.

Plot3D. plotSurface

platSuface
ilots

coordinateSystem

plotSurfaces |

Rows |2

plotD ata

vectorField

styleD ata

1 |’I0tData[H=x1, p=yl, z=21]| |[nx=nk1 L hp=twl, nz=nz1]| |)ataSurfac:e[U, {255,0,0}]|

2 [lotDatalk=x2, y=y2, z=z2] E 3] |

|E=] 5 urtace(0, {255.170.85)

0K

J |

Info

][Copy Call][Execute][

Cloze

VISUALIZE 3D

115

One possibility is to have different colors for the surfaces. The intersection of the parabolic
surface and the hyperbolic surface with different colors will look as follows.

Visualizer [1] EEX

\ &
s taos
-

| z Axis

AL o‘,‘ AT ’Q e
LILHERE B,
‘«‘r/ 03>

it

Combining different styles, we can obtain the following graph.

Yisualizer [1]

1 y v Axis

‘ z Axis

The contour lines in the parabolic surface (red) are used to illustrate that the intersection
does not happen on a plane. The black color corresponds to the level z=-1.5 and the white
color corresponds to the level z=1.

116

We can add a pointer to show where the maximum of the red surface occurs. Using the
function Plot3D.insertPointer directly on the last image we can add text and an arrow. The
resulting figure follows.

Visualizer [1] =

z Axis

To plot discrete data, the alternative is to use plotStem function. This function considers
each point by itself and puts a triangle, square or circle at the data point and adds a line from
the point to the plane XY. We plot here down as example the amplitude or absolute value of
the discrete Fourier Transform of a pulse. Putting these values in the unit circle of the
complex plane relates the Z-transform to the discrete Fourier transform. The color is
interpolated in the x direction.

VISUALIZE 3D 117

Visualizer [1] El@@

Imaginary Part

Real Part
0.5\

h0e Amplitude

Other alternative that Plot3D provides is to make pie charts. Statistiska Centralbyran
(Central statistics office) in Sweden reports the following population distribution by age in
2005. Two age groups are separated (30-34 and 55-59) to distinguish them.

Visualizer [1]

Swedish Population - Year 2005

Age Group

00-04
05-09
10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
50-64
650-69
70-74

§% 7%

5 %
& 6 %
4%
5%

6 %
7% 1%

LN BB BN R B R B BN B

7%

118

Model Experimentation

Model Experimentation

Introduction

Dymola provides the Experimentation package as a feature of the Design package. The main
purpose of this package is to allow the user to vary parameters of the system to get an
intuitive knowledge of the behavior of the model. Some of the functionalities of this
package are related to other functions of the Calibration package.

The main difference is that those are coupled to the calibration setup, while the functions in
Experimentation are independent and can be used to illustrate phenomena of the system.
One of the functionalities of Experimentation package is essentially different: Monte Carlo
simulation.

MODEL EXPERIMENTATION 121

Varying parameters of a model

The Experimentation package provides several ways of analyzing the behavior of a model.
The main functions are perturbParameter, sweepParameter, sweepOneParameter,
sweepTwoParameters and MonteCarloAnalysis.

Packages
= [JDesign
+ []| Calibration
: [Experimentation

perturbP ararneters
sweepParameter
sweeplneParameters
sweepT woParameters
MaonteCarlodnalyszis

+ (] Probabilities

+ [RandomMumber

E [JExamples

The functions perturbParameters, sweepParameter and sweepTwoParameters have
corresponding in the Calibration package and can be used for more general parameter
studies. The main difference in this package compared to Calibration is that the resulting
output is the response of the model. We give a short overview of these functions now.

The functions sweepOneParameter and MonteCarlo Analysis complete the set, giving the
possibility of plotting the response at the end of the integration interval and random draws of
numbers for the parameters in Monte Carlo simulations. The example studied for this
package is the model Design.Experimentation.CoupledClutches. This example is an
extension of Modelica.Mechanics.Rotational. CoupledClutches.

Case Study: CoupledClutches model

The model CoupledClutches is composed by four rotating inertias J1, J2, J3 and J4 coupled
by three clutches that make them interact. The diagram looks as follows.

122

=inl

targue Nl
Pax N 1 —

[3 =Y Y (P Y (P

freqHz=0

The parameters of the model to explore are the inertia values J1.J, J2.J, J3.J and J4.J. The
observed variables are the rotational speeds J1.w, J2.w, J3.w and J4.w. The setups of the
functions are very similar and their description will therefore be brief.

Perturb parameters

Let us check the behavior of the model if we perturb the nominal values of the parameters.
Select the function Design.Experimentation.perturbParameter in the package browser. Click
right mouse button and select “Call Function ...”. The following menu pops

Design. Experimentation. perturbParameters

@ perturbParameters @ setup | Tree data l
= P Inputs
& pertubationParameters Model | b Modelica name of the model used

: W ariablesT oPlot

g, 4 Inkegrator

QK | Infa | Copy Call | Execute | Close |

Now, to specify the model to use, click on Edit icon to the left of the input field. A package
browser pops up. Use it to select the model.

MODEL EXPERIMENTATION 123

Select model

Packages m
=[] Design

[C]Calitration

EI ﬁ E xperimentation
| i [Probabilties
[CJ Randombumber
= [CJExamplas
| CoupledClut j

ak. | Cancel ‘

Click OK. The model is now translated in order to gather information needed to build
browsers and selectors to support the remaining setting up. If Dymola already has a
translated model, then this model appears as the default model.

Design. Experimentation. perturbParameters

@ perturbParameters ﬁ zetup Tree data l
Inputs
& perturbationParameters Madel | "D esign. Experimentation. E xamples. CoupledClutches" r todelica name of the model used

- ™V ariablesT oPlat

Hl b
4, t, inkegrator

aK | Infa | Caopy Call | Execute | Close |

The next task is to select the parameters to perturb and the variables to observe and plot.
Click on perturbationParameters, and then on the “Select” button.

124

Design. Experimentation. perturbParameters

@ perturbParameters
E| @ setup

perturbat
- W ariablesT oPlot

H _—.
g, 4 Inkegrator

perturbationParameters

Drescription
Model parameters to be calibrated

Rows |0 jl

harme Change Relative Walue

Select

Copy Call Execute Close

aK | Info

The following browser pops and the parameters J1.J, J2.J, J3.J and J4.J can be selected as
perturbation parameters. Their nominal value is 1 for all of them. The perturbation is by
default 10 percent.

Select

Compohent |;|

- clutchl

+- i
- stepl
=2

e W el

DR O
EL%

=
Fa

[clutel
=-J3

0RO
EL%

o
)

[#- clutc
=4
.. [phi —
O ow ﬂ

Reszet fram file: [T Walue

ak | Cancel |

We can select a percent change of absolute change if we like. In the setup presented, the
parameters are perturbed 10 percent from their nominal value.

MODEL EXPERIMENTATION 125

Design. Experimentation. perturbParameters

@pertuer’arameters # perturbationParameters
B- @ setup Description
[@ pertubationParameters odel parameters to be calibrated

- /W ariablesT oPlot

ﬁ integratar Flows |4| ZI
name Change Rielative | Walue
1 T 01 e x| 1
2 izt 01 e x| 1
3 N 01 e x| 1
4 g 01 e x| 1

g | ﬂ Select

QK | Infa | Copy Call | Execute | Close |

Now, let us select the variables to plot. Click on VariablesToPlot and then clicking on
“Select variables to plot” button we get a variable browser where the selection of J1.w, J2.w,
J3.w and J4.w is possible. The resulting menu looks as following.

Design. Experimentation. perturbParameters

@pertuer‘arameters A WaniablesT oPlat
B ﬁ setup D escription
[## perburbationParameters Calibration criteria definition for all experiments

- #CWariablesT oPlat

ﬁ inkegrator Flows M ZI
name
1 | "
z | 2w
3 | S
4 | "

g | ﬂ Select variables to plot

QK | Infa | Copy Call | Execute | Close

Finally, the setup for the integrator is to be done. Click on “integrator” and set as stop time
1.2

126

Design. Experimentation. perturbParameters

@pertuerarameters ﬁ integratar | Advanced l
=) ﬁsetup Description
& perturbationParameters Integrator pararmeters for all cages

S WariablesT oPlat Simulation |nteryal

w44 integrator Start time bz Start time of simulation
Stop time 1.4 & Simulation stop time

QK | Infa Copy Call Execute Close

and the default tolerance for the integrator lowered to le-6.

Design. Experimentation. perturbParameters

@pertuerarameters § ¢ integrator | Advanced ‘
=) @setup Output Interval

® perturbationParameters Interval length » 3 Distance between output points
- W aniables T oPlat Mumber of intervals 3 Mumber of intervals for output

P
4, t, Integratar

Integration

Algorithm ’—Ll » Integration method to be used
Tolerance ,713.5“ » Relative tolerance outside of optimizer

[& more shict tolerance is uged during optimization]

Fized integrator step » = Step size for fiked step integrators

QK | Info | Copy Call | Execute | Cloze |

Now we can run the command. Click on “Execute”. After the simulations, and moving the
legends to the appropriate place, we get the following sequence of images.

MODEL EXPERIMENTATION 127

[rad/=]

84
— M. ifReference
A —— e ir) =1.00+010
—— Mo 2.0 =1.00+010
A4l —— Mo it d3.0 =1.00+0.10
—— How A4 =1 00+0.10 B
T T
o.oo 025 0.s0 ors 1.00
4
24
— J2.w Ji Reference
A —— 2w i) =1.00+010
— 2w 2.0 =1.00+0.10
O —— J2uw 41030 = 1.00+0.10
—— 2w A4 =1 00+0.10
T T
0.00 025 0.s0 07s 1.00
4
24
— J3.w if Reference
g —— J3w S 1.0 =1.00+0.10
——— 3w HJ2.0=1.00+0.10
A —— J3we I3 =1.00+0.10
—— 3w A 4.0 =1.00+0.10
-2 T
000 025 050 o7s 1.00
24
— J4.w Jf Reference
A ——— 4w v)= 1004010
—— 4w 2.0 =1.00+0.10
O ——— Jdww 1 3.0 =1.00+0.10
—— 4w A4 =1 00+0.10
T T
0.00 025 0.s0 07s 1.00

The plots show the variation of every variable when varying the parameters J1.J, J2.J, J3.J
and J4.J 10 percent, one at a time. We observe, for instance, in the first plot that only the
variation of J1.J affects the response on J1.w.

Sweep One Parameter - two variants

The phenomenon described before can be observed in another fashion. We can sweep one
parameter and observe the result along the whole interval form 0 to 1.2, or just at the final
time of 1.2 seconds. These variants are implemented in two functions sweepParameter and
SweepOneParameter.

sweepParameter

128

The setup of this function is very similar to perturbParameter. Click on
Design.Experimentation.sweepParameter to get the setup menu. The model is already filled
in.

Design. Experimentation. sweepParameter

@sweepParameter @ setup Tree data l
El tup Inputs
dependencyP arameters Model | "Diesign.E xperimentation. Examples. CoupledClutches" » Modelica name of the model used

AW ariables T oPlot

—.
- 4, t, Integratar

0K | Info | Copy Call | Execute | Cloge |

We have to select the dependency parameter and the variable to plot. The way is the same as
before. We just present the menus as a guide.

Design. Experimentation. sweepParameter |2|[g|
@sweepParameter # dependencyParameters
=3 ﬁsetup Description
dependencyP arameters Model parameters to be calibrated
AW ariables T oPlot | :I
H . Raows |1 =
ﬁ Integrator
name Sweeping Yalues
1| “U1.0" |Equidistantondio. 8. 1.1, 5] x|

0K | Info | Copy Call | Execute | Cloge |

In this case, we are selecting five equidistant values between 0.8 and 1.1 for J1.J. The
variable to plot is J1.w

MODEL EXPERIMENTATION 129

Design. Experimentation. sweepParameter

@ sweepParameter
E| @ setup

—

L gy, integratar

1

dependencyP arameters

A WaniablesT oPlat

Dezeription
‘Wariables to plok

Rows |1 jl
name

1| S

| ﬂ Select variables ta plot

QK. | Infa Copy Call Execute Cloze

Don’t forget to set the Stop Time to 1.2 in the integration setup and the tolerance to le-6!
Press “Execute” and the result follows.

11
—J1.w//J1.J=0.80
104 —J1w//J1.J=0.88
— J1w//J1.J=0.95
— J1lw//J1.J=1.03
9+ —J1lw//J1J=1.10
8,
7,
@
g%
5,
4,
3,
2,
1 L e o S e e S s e e o A e
0.00 0.25 0.50 0.75 1.00

Let us observe now Jl.w and vary J2.J. Change in the setup J1.J with J2.J, in
dependencyparameters setup. Press Execute again.

130

11.0

10.5+ Jl.w//J2.J=0.80

——— Jlw//J2.=088
10.01 —— 3w //J23=095

9.5 — Jlw//J23=103
—— Jlw/J2J=110

9.0+

8.5
8.04
7.5
7.0

[rad/s]

6.0
5.54
5.0
4.5
4.0
3.5
3.0

2.5

2.0 T T T T
0.00 0.25 0.50 0.75 1.00

The response J1.w is less sensitive at the beginning of the interval to variations of J2.w. At
the end, when all inertias are coupled, the variation is larger.

sweepOneParameter

If our interest is just the response at end point of the interval, we use sweepOneParameter.
This setup is the same as for sweepOneParameter. Just choose J1.J as dependency variable
in the same way, take 51 values between 0.8 and 1.2 and use J1.w as variable to plot. The
following curve is obtained when the command is executed. Once more, don’t forget to set
the Stop Time to 1.2 in the integration setup and the tolerance to 1e-6.

MODEL EXPERIMENTATION 131

Time = 1.200000

Jiw

This curve relates at t=1.2 the parameter J1.J and the response J1.w. The same situation can
be depicted for J2.J as parameter and J1.w as response. The figure follows.

Time = 1.200000
2.85

2.80
2.754
2.70+

2.65

1w,

=
2.60
2.55+
2.50+

2.45+

2.40
080 084 088 092 096 3.263 104 108 112 116 1.20

Sweep Two parameters

To study the dependence of one response with respect to two parameters at the end of the
integration interval, the function sweepTwoParameters is to be used. The setup is almost
identical to sweepParameter and sweepOneParameter. The only difference is that two
dependency variables are to be selected instead.

132

Design. Experimentation.sweepTwoParameters

@ sweepT woParameters
= ﬁ setup
" dependencyParameters
" e WariablesT oPlat

1, t, integrator

@ dependencyParameters

Description

Model parameters to be calibrated

Rows |2 =
name Sweeping Values

1 1.0 quidistantgrid(0.7, 1.3] »

2 20" quidistantgrid(0.7, 1.3] »

|

T3

Info | [CoCal | [Esecute |[Close |

We observe now J1.w against J1.J and J2.J. The values chosen for J1.J and J2.J are eleven
values between 0.7 and 1.3 for both variables. Even for this case, the Stop time is 1.2 and

the tolerance is 1e-6 in the integrator tab.

Observing J2.w gives the following result.

J1lw

MODEL EXPERIMENTATION 133

13 13

J2.w

Monte Carlo Analysis

Monte Carlo Analysis is widely used to explore the behavior of a model when the input
parameters are multidimensional. We will set up now the command MonteCarloAnalysis to
observe the model response when varying J1.J, J2.J, J3.J and J4.J at the same time. As
before, select Design.Experimentation.MonteCarloAnalysis function. The following menu

pops.

Design. Experimentation.MonteCarloAnalysis

@ MonteCarlafnalysis

-~ uncertainParameters

i finedParameters
i " obzervedvariablas

g inkegrator

ﬁ zetup

Inputs

Model | "'Design. Experimentation Exarmples. CoupledClutches™ ¥ Modelica name of the model used for Monte Carlo

Tiee data I

Ok | Info Copy Call Execute Cloze

134

The task now, as before, is to select the uncertain parameters. Click on uncertainParameters
and click on “Select”-button. Select in the browser J1.J to J4.J.

Select

Component I;'

B-J1
.. phi
- [

. [phi
J
O w
[#- clutch3
[=-J4
- 1 phi | |
I
O w j

Design. Experimentation.MonteCarloAnalysis

@ MonteCarlodnalysis uncertainParameters

E| ﬁsetup Description
- uncertainParameters Model parameters to be calibrated
wedParameters

- " obzervedyanables Rows |4 il
ﬁ integrator Mame ki iU R atdaorn Distribution

1 PR -1e1in 1e100 |2 E

2 nzJn -1e100 1e100 hd __§|

3 EEND 1100 1100 = EE

4 TG BT Te100 ~|E

n | ﬂ Select

u] | Info | Copy Call | Execute | Close |

Click on the arrow of the combo box and select randomNormal for J1.J. Another menu pops
up asking for values for “mean” and “standard deviation”. Those values characterize the
normal distribution to be used. Set mean to 1 and standard deviation to 0.1.

MODEL EXPERIMENTATION 135

randomMNormal Distributions

-4:‘- randomMarmal

Inputs

Mean Value 1
Standard Deviation [iIRTIY

oK | o | oose |

Click OK. Repeat the same process for J2.J to J4.J.

Design. Experimentation.MonteCarloAnalysis

@ MonteCarlodnalysiz uncertainParameters l
E| @Setup Description
uncertainParameters Model parameters to be calibrated

finedParameters
"= obzervedyariables Rows |4 ZI

H integrater Name iU naEimum R andorn Distribution
1 | 1 Telin | Te100 [4 randomMomall..) ¥
2 e -1e100 1100 | 4+ randomMarmall..] *]F S
3 n3d -1e100 1100 | 4+ randomMarmall..] =] EE
4 MEWE 1e100 Te100 | 4 randomMormall...] > | El

q | ﬂ Select

u] 4 | Info | Copy Call | Execute | Cloge |

The setup for fixedParameters is used if we want to specify other simulation situations than
the nominal values written in the model. For instance, if the initial angle J1.phi is specified
and different from zero, we should add it there. In our case, we don’t have such fixed
parameters so we just go directly to observed variables. Click on observedVariables and
press the button “Select observed variables”. Mark in the browser J1.w, J2.w, J3.w and J4.w.

esign. Experimentation. M

@MontetarloAnalysis "~ obzervedyariables
- ESEMD Description
uncertainParameters Obzerved Vanable of the random experiment
fimedParameters
Rows |4 jl
t, t, Integrator Obgerved variable | automaticBinsl Intervals
1 Ul | te | filin, 0) =] E5]
2 | 2w | te | filin, 0y = E5]
| R te | filin, 0y = E5]
| | te | A =
Select observed variables
oK | Info | Copy Call Execute Cloze

136

The flag automaticBins set to true allows the algorithm to choose automatically an
appropriate set of bins, according to the maximum and minimum values observed in the
result. It takes also into account the total number of samples to set the appropriate resolution.
Set the integrator stop time once more to 1.2. To set up the type of desired result, click on
MonteCarloAnalysis.

Design.Experimentation.MonteCar loA nalysis

EI ﬁ setup
[uncertainParameters

-finedParameters
- ™~ observedyarniables

4, t, Integrator

@ MonteCarlodnalysiz | Tree data l
Description

perform Maonte Carlo Simulations to obtain the rezultant probability distribution at tstop
Inputs

Mumber of random samples | 20 »

Shaw Accumulated Distributions [3

Plot the results of every draw v 3

oK | e CopyCal | Oose |

We set the number of draws in the field “Number of random samples”. As we want to plot
the result of every draw, only twenty draws are needed. Check also “Plot the results of every
draw” to obtain the plot of the responses and the density of probability.

MODEL EXPERIMENTATION

137

In this graph we observe the variation of slope and behavior produced by random sampling
of the values of J1.J, J2.J J3.J and J4.J in time.

If the plots of the density of probability or accumulated probability are important, we change
the setup to plot those with more samples. To plot the densities, we take five thousand
samples and uncheck the flag “Plot results of every draw”. Press Execute to obtain the plots.

Expected Value = 2.64922

Standard Deviation = 0.334017 Expected Value = 2.45047

Standard Deviation = 0.183664

nn 25
1.2 i{H
2.0+
> 4
% 08— z 15
2 G
3 5
e)
£ 1 z 10
2 3
g]
E
2 04— g
& & 05+
0.0
0.0— o
T 1 1 05 1 1 T
2 3 4 16 2.0 2.4 28 32
Jlw J2.w
Expected Value = 2.45047 Expected Value = 2.44975
Standard Deviation = 0.183664 Standard Deviation = 0.183524
25 25
2.0+ 2.0+
= 1.5+ % 154
@
2 2
8 8
2 1.0+ 2z 10
3 8
3 g
g s
o 05— o 0.5+
0.0+ 0.0
-05 T T T 05 T T T
16 2.0 2.4 2.8 32 16 2.0 2.4 2.8 3.2
J3w J4w

To plot the accumulated distributions, check the flag “Show accumulated distributions”.

138

entation.MonteCarloAnalysis

@ MonteCarlafinalyziz : @ MonteCarlodnalysiz | Tree data
= ﬁ setup Drescription
ncertainParameters perform Monte Carlo Simulations to obtain the resultant probability distribution at tstop
inedParameters i
. I
= ohzervedVariables MRS
[S— Mumnber of random samples | 100 »
- ¢, t, Integrator o
Show Accumulated Distributions v »
Plat the results of every draw I »

0K | Infa Copy Call Execute Cloze

Click on Execute. The result plots follow.

Expected Value = 2,63908 Expected Value = 2.44466
Standard Deviation = 0.33264 Standard Deviation = 0.184702

12 12

08— 08—
£ >
§ g
o [=}
z 2
H 5
g 04— g 04—
8 8
@ [

0.0~ 00—

I I I T I I
1 2 3 4 16 20 2.4 2.8 32
Jiw J2w
Expected Value = 2.44466 _
Standard Deviation = 0.184702 Expected Value = 2.44398
12 Standard Deviation = 0.184331
- 12

08— 08
R .
] 2
g a
[a) 3 7
2 z
3 £
g 04— 2 04
s -
- o

0.0~ 0.0

I I I T T T
16 2.0 24 28 3.2 16 20 24 28 32
3w Jaw

MODEL EXPERIMENTATION 139

Random Distributions available and their parameters

The following table reviews briefly the random distributions in Experimentation package
that can be used together with MonteCarloAnalysis.

Distribution Parameters Probability density Accumulated probability
o 1
Normal randomNormal randomDistrib... E|E|
0.4-| 104
-41‘ randomMomal l
. 08
Inputs 5 03 H
Mean Yalue i § E o6
Standard Deviation 1 % 4 % 0]
S o] g 02
Ok, o | oo |
00| o 0.0
-0 T T T
01 —— 2 ; : i
4 2 0 2 4
. 1 1
Uniform randomUniform randombDistri... E|E| 1
10
Fl randornifarm l 12+
Inpits - 4 £ 7
M aximun Yalue of Interval 0 § 08| g osq
L z 3
Minimum % slue of Interval T 2 B g ol
£ £
o7 < 0.2
oK. o | o | 1
0.0
0.0
— . T T T T T T T T :
00 05 10 00 05 10
. . 1. 1
Logarlthmlc randomlLogNormal randombist... @
Normal s 10
-ql‘ randomLogM armal
0.8—
Inputs 06 z
z 3
Mean Yalue 01 § g 06
Standard Deviation 05 » % 04— % s
2 T e
Y < ol
oK. o | o |
0.0 0.0+
o | . T
02 T T T T T T 0 2 i :
0 2 4 6
. x
1
Pareto randomPareto randombistribu... E|E|
1.0+
JP‘ randomPareto 6
Inputs - E? o7
lpha Ty £ o £ oo
2 H
g] g 0.4
aK Inf Cl & 2 g
nfa | lose | 2 g
0.0~
o]
——— 0 T T T T T T T T T
10 15 20 10 15 20

140

. 0.
Exponentlal andomExponential randomDi .
R 10+
J-P‘ randomE xponential 06 0a
Irputs 4 %
z £ i
Lambda factar [1/mean_twalus) 1 2 04 3 °
I £
oK. o | cese | £ .
0.0
0.0~ 0. r T T T T T o
T T T T T T T T T
o 5
x
Circular = ; i 2 ’ ’
randomCircularUnifarm rando. .. Elgl
Uniform 0o 10
-fP- randomCircularl nifarm \ 08
Inputs o 03 EE 0o
Mean Value 15 E %
R £ oa
A Parameter 0 £ g
g 8
@ < 02—
& o1
o | e | ome | 0o
0.0
o T T T
2 3
0.1 T T T T T T T
1 2 3
X
kX 1
Beta M
25— 104
411‘ randomBeta
204 z "7
Inputs > 3
[g oso
Alpha factar 3 g 159 %
Beta factor T % 1o Lé o4
& < 0o
05—
0K | Infa | Close | 0.0
0.0~
o
0 T 00 0% o
0.0 0.5 1.0 X
x
. 1 1
Weibull
7 1.0+
-41- randarieibull 12+
o 0.8—
Inputs E 1 g ol
Alpha facter 1 g o8 g
z 2
Beta fach 1 E 4 é 04
8 H
& 04 < oo
ok | me | cee | 1 o
0.0
0. T T T T T
T T T T T T T T T 1

MODEL EXPERIMENTATION

141

Erlang

randomErlang randombistribu... EJE\

-41- randomE rlang
Inputz 06
K T
Theta | 1

Accumulated Probabilty

Probability Densiy
1

Data Preprocessing

The quality of the calibration process is directly related to the quality of the measured data
used as input to the calibration tool. Any factor that perturbs the data will cause directly
distortion of the final result of the calibration tool. It is important then to preprocess the data,
that is, to adjust the data eliminating noise, zones where the model is not valid and
erroneous or not representative measurements.

The Design.Calibration package incorporates the function dataPreprocessing with this
objective: preprocess data for calibration.

Setting up for preprocessing

Select dataPreprocessing in the class browser under Design.Calibration. Click
right mouse button, select the command “Call function...”

142

Packages

EI []| Design

=) []| Calibration

- @ calibrate

- @ perturbParameters
- @ aweepParameter

B

- @ aweepT woParameters

- @ checkCalibrationS ensitivity
2 & d=t=Preproc
[+ (] Examples

[+ ﬁ Internal

Cpen Class in New Window

R Bl elP e b

Call Funckior. ..

Open Class in This Window

: izheck,

! Q Search...

Close

Info

The dialog of dataPreprocessing pops. We select now the file we want to process and the file
that will contain the output.

Design.Calibration. dataPreprocessing

[=) sigrials
L gignals]1]

dgtaF‘reprocessing dataPreprocessing lTree data l

Drescription

Preprocess data (limit, detrend, filker)

Inputs

filenarmeln | b Input Filename
filzrameut | ¥ Output Filename
Plat Signals before and after | 4

] 4 | Info Copy Call Ewecute Cloge

MODEL EXPERIMENTATION 143

To introduce an experiment file, click on the Edit icon in the “Input Filename”. A file
browser pops up. Use it to select the file

.../Design/Calibration/Acceleration measurements.mat.

Design.Calibration. dataPreprocessing

dalaPiepiocessng dataPreprocessing | Tree data |
B sl:gna!x Description
e gighials[1]

Preprocess data [limit, detrend, filker)

Inputs

fileriarnel |Design.n"Ealibrationfﬁcceleratinn meazurements. matimeasumnents” ¥ Input Filename
filerame0ut | b Output Filename
Plat Signals before and after | 3

k. | Info Copy Call Ewecute Cloge

The same procedure has to be repeated to select an output file. In this case, the file does not
exists. We choose as name for this example

.../Design/Calibration/Acceleration measurementsfiltered.mat.

Design.Calibration. dataPreprocessing

cl;ntaF'ra:Tssim dataPreproceszing l Tree data l
= signals Diezcription
- signais{1] Preprocess data [limit, detrend, filker)
Inputz
filenameln |'Designa"Caliblatinna’.ﬂ.cceleration measurements. matimeasurments'{ » Input Filename
filzrarmeCut |)esignHDesign.n’Calibratinna’.‘i‘«cceleration meazurementsfiberad. mat” ¥ Output Filename

Plat Signals before and after [v 3

k. | Infa Copy Call Execute Cloze

and check the field “Plot Signals before and after” to obtain a plot of the original signal and
the result of the preprocessing.

144

It is possible to overwrite the original file, there is no restriction for that. But the data is
destroyed. This means that the original data is gone, and no possibility of recovery is
possible. A good practice is always to change the name slightly, since we might want to
adjust later on the preprocessing parameters.

We select now a signal from the file. Since the input filename is a .mat file, we don’t have
access to the name of the variables, but we know the position of the acceleration signal, that
is, number four in the matrix. Choose “4” from the combo box in “Signal Name”.

Design.Calibration. dataPreprocessing

dataPreprocessing FreprocessingSignal \
(=) signals

= Inputs
- zignalz[1]

Signal Hame | ﬂ
mirimum Bound Signal

nyn
ngn
nagu

mawimum Bound Signal
minimum time:

mawimum time

Detrend gignal H ML

filter | ~|E»

Frequencydnalysis | Ml

] | Info Copy Call Execute ‘ Cloge |

The dataPreprocessing tool assumes for .mat files that time is in the first column always.
This is a cornerstone of the function, since all functionalities are relying on time. This is
very important. If we instead choose to process a .csv file, we get the names in the combo
box. We can simply then select “acc”. And dataPreprocessing will seek the keyword “time”
and “Time”.

MODEL EXPERIMENTATION 145

Design.Calibration. dataPreprocessing

dgtaF’repmcessing PrepracessingSignal \
=- signals Inputs
e gignalz[1])
Signal Mame | ﬂ 3
mirimum Bound Signal »
mawimum Bound Signal “time" »
. . "speed"
rninirnLan kirne: “digt »
rnaRirLm trne »
Detrend zignal M i
filtes | j EL
Frequencudnalysiz | - »
(] | Info Copy Call Execute ‘ Clogze |

We are ready now to run the preprocessor function. We start lilmiting and detrending
functions.

Limiting and detrending signals

Limiting and detrending the signals is also very important. To limit a signal in time and
amplitude it is enough to write the desired values in the fields “minimum Bound Signal” and
“maximum Bound of Signal” for the amplitude and “minimum time” and “maximum time”
for time axis. The data outside of these limits is taken away and interpolated or extrapolated
linearly.

Design.Calibration.dataPreprocessing

d;ltaF'repmcessing PreproceszingSignal l
[=- signals Inputs
- zignalg[1])

Signal Hame | "4"ﬂ 3
minimum Bound Signal | 3
maximum Bound Signal | 4.3k
mirirnum kime | A
marimum trne | E2»
Detrend zignal | j 3
filker | MaFilkering j 3
Frequencydnalysis | 1j 3

0k, | Info Copy Call Enecute | Cloze |

146

Just to demonstrate this feature, take as limits the interval [-1e100,4.3] for the amplitude and
[3,6.2] for time. Press Execute and the result is presented.

Time

All values outside of the range have been substituted by linear interpolation. Now, we
choose “Line(y=a*x+b)” in the combo box “Detrend signal”. This will fit in least squares
sense a straight line and subtract it form the data.

Design.Calibration.dataPreprocessing

dgtaF‘reprncessing PreprocessingSignal l
[=- signals Inputs
- zignalz[1]
Signal Hame | "4"j 3
minimurn Bound Signal | 1e100 p
masimum Bound Signal | 4.3k
rninirnumn ke | 3
maximum trne | E2»
Detrend zignal | MHone j 3
filter »
. MHone
Frequencydnalpsis »
: yhnaly tean Value
0k, | Info Copy Call Enecute Cloze

MODEL EXPERIMENTATION 147

Press Execute and the result follows.

Time

We observe the resulting curve. The other possibility for detrending is “Mean Value”, that
subtracts the mean value of the function. Reset the values of the limits and set detrending to
“None”. We are now into frequency analysis and filtering of signals.

Analysing Signals: is there any noise?

Let us analyse the function in the frequency domain. The point now is to filter out noise.
Such a noisy perturbation is normally easy to get in the measured data and complicates later
on the calibration process unnecessary. Select “Fourier” from the combo box of
“FrequencyAnalysis”.

148

Design.Calibration.dataPreprocessing

dataFreproceszing PreproceszingSignal l
[=I- zignals et
e zighalz[1])
Signal Harme | "4"j 3
minimum Bound Signal | 3
maximum Bound Signal | 3
minimum time | 3
maximum tirme | 3
Detrend gignal | il
filker | x| EE»
Frequencydnalysis | - »
Dizcrete Cozine lose |

We are about to perform the discrete Fourier transform (DFT) of the acceleration signal. The
DFT is defined as follows. Assume we have N samples of a function X, = X(t,) at

t, = nTS , where Ts is the sampling time. The DFT is a set of complex numbers C, such that

N
X, = ch exp(ia)knTs)
k=1

27k

for all sampling X points and frequencies @, = W , and 1 the imaginary unit. The
S

coefficients C, can be calculated explicitly by matrix-vector multiplication or by more

effective algorithms in case of large amounts of data.

T
The frequencies are discrete equidistant points distributed in the interval O,T— . Since

S

_) . 12zkny)
the complex exponential function exp(l wy, nTs) =exp T is periodic, we choose

VA
a representation in the interval ——,T— , to have the highest frequencies farther at the
S S
boundary, instead of in the middle of the graph. Now, we press Execute and obtain the
graph at the left side. The right side graph is a zooming.

MODEL EXPERIMENTATION 149

4 (Amplitude)

80

60—

40—

20—

. Frequency Analysis
Frequency Analysis Folijrier Tyransfgrm
Fourier Transform

0.4 —

0.0

b

4 (Amplitude)

-25

\ 08 1 | I
0 25 -25 0 25

Frequency (Hz) Frequency (Hz)

Since the coefficients are complex numbers, we present their modulus. In the log of the
command window we observe also the following report

Processing signal 4
Signal 4 has the 99.5341% of its power under 2.21519 Hz

This is an important piece of information. The tool detected that the energy of the signal is
almost condensed in the interval [—2.2159,2.2159]. In the graphs before (right) we

observe the behavior of the coefficients, and it is less smooth and more erratic outside of the
interval reported by the tool.

We can therefore suspect that additive noise is present in this range of frequencies. We can
now design a filter and get rid of these noisy oscillations.

Filtering signals

Back to the GUI, click on “filter” combo box and choose “FilterDesign”.

150

Design.Calibration.dataPreprocessing

dataFreproceszing PreproceszingSignal l
[=I- zignals et
e zighalz[1])
Signal Harme "4"j 3
minimum Bound Signal 3
maximum Bound Signal 3

maximum tirme

3
Detrend gignal j '
FilterDesign...) ﬂ »

Frequencydnalysis - »
HaoFilkering

|
|
|
minimum time | 3
|
|
|

filker

0k, | Infa Copy Cal Enecute Cloze

The GUI for filter Design from the LinearSystems library pops up now.

FilterDesign filter

FilterDiezign l

IhpLts

analogFilter |'nS.Types..-’-'maIDgFiIter.Buttetwolthﬂ 3 Analog filker charactenstics [CnticalD amping/Beszel/Buttenvorth/Chebyzhey]

filterType | ﬂ 3 Type of filter [LowPazz/HighPazz)

order | 3 Order af filker

f_cut | 2 v Hz Cut-off frequency [default is w_cut =1 rad/s)

gain | 3 Gain [= amplitude of frequency rezponze at zero frequency]
A_ripple | » dB Paszs band ripple far Chebyshey filker [othenwize not uzed)

normalized | = true, if amplitude of low pass filker at £_cut iz 1/2qr(2), athenwize unmaodified filker

ak | Info Close

We choose a Butterworth filter in “analogFilter” and as cut frequency we choose 2 Hz. It is
enough to choose 2 Hz and not exactly 2.2159 since the filter is not ideal and we will
smooth out the spectrum of the signal around those frequencies too. The type of the filter
has to be lowpass since the signal is clustered around zero frequency. Press OK. Then
Execute in the main GUI. The resultant spectra are presented.

MODEL EXPERIMENTATION 151

4 (Amplitude)

80

60—

40—

20—

Frequency Analysis Frequency Analysis
Fourier Transform Fourier Transform

0.8
0.4—|
@
3 i
2
£
3
i < 0.0
<

-25

e

0 25 -25 0 25

Frequency (Hz) Frequency (Hz)

We observe how high oscillatory modes are smoothed out. This means that the signal in
time is also smoother. The result is presented in the next picture.

Time

The filtered signal (red) has less noise than the original one (blue). This makes the
calibration process easier. The filters are constructed using the LinearSystems library from
the Modelica Standard Library 2.2. These are discretised versions of continuous systems,
with a discretisation in such a way that the ramp response is exact. The possible filters are
four: Critically damped, Bessel, Butterworth and Chebyschev.

152

Model Calibration

Model calibration

Introduction

Dymola includes features to perform integrated computer experiments with Modelica
models. This document describes the features to calibrate and to assess models. The
functions described in this document are parts of the Design.Calibration package. The
ModelCalibration option is required for problems with more than one tuner. However, the
examples given below can be run without the ModelCalibration option.

Consider a Modelica model describing a physical system. Such a model includes typically
many parameters, which have to be set. Some parameter values can be found from design
sheets. Some parameters such as physical dimensions may be easy to measure on the
system. Direct measurements of the weights of the parts are more difficult since it requires
the system to be dismounted. Moreover, it is for example not simple to measure the inertia
of a part. Friction and loss parameters are good examples of parameters that often are
unknown.

Model calibration (parameter estimation) is the process where measured data from a real
device is used to tune parameters such that the simulation results are in good agreement with
the measured data. The parameters that we tune are often referred to as tuners. Dymola
varies the tuners and simulates when it searches for satisfactory solutions. Mathematically,
the tuning procedure is an optimization procedure to minimize the error between the
simulation results and the measurements.

MODEL CALIBRATION 155

When tuning parameters from measurements, a basic question is “Which parameters can be
estimated from the measurements available?”” Changing a parameter to be estimated must of
course influence the output. However, this is not enough. Two or several parameters may
influence the result in a similar way such that it is not possible to estimate them individually.
Dymola includes function to analyze and to plot parameter sensitivities. When a set of
parameters have been tuned, it is recommendable to validate the model and the tuned
parameters against other measured data to check that there is a good agreement between the
simulation result and the new measurements. For a specific series of measured data it is
possible to get good fits by increasing the model complexity and the number of tuned
parameters. However, this does guarantee that the result is that good for other operating
conditions.

To load Design.Calibration, select File/Libraries and click Design.

Packages I
=1 (JDesign
= [JCalibration

- icalibrate

perturbFarameters
sweepParameter
sweepTwoParameters

- (T checkCalibrationSensitivity
[JExamples

& (] Internal

The function Design.Calibration.calibrate is the main function for calibration and validation
of models. There is also a set of functions for analyzing parameter sensitivities and
dependencies of calibration tasks. For parameter studies in general see
Design.Experimentation.

This document uses a simple car model describing translational motion to illustrate how a
basic calibration task is set up and executed. How to store a setup for later reuse is described.
Then this document describes the set of functions to analyze parameter sensitivities and
dependencies of calibration tasks.

The basics of setting up and executing a calibration task

We have acceleration and speed measurements from a BMW 645i at full throttle as shown
in the plot below. For further information we refer to Auto Mobil, Issue 1, 2005.

156

dacc

speed [km/h]

100

80+

60+

40+

20+

Anti spin control and gear shifting make the acceleration curve complex. Here we will focus
on the time interval 3.8-6 seconds when the second gear is engaged.

We need to describe how the generated torque makes the car move. Thus we need to make a
simple powertrain model including gearbox and rotating elements which make the wheels

rotate.

Vehicle data

By searching on the web we can find the following data for the car

Engine torque at 3600 rpm [Nm] 450
Engine inertia [kgm?’] 0.4
Gearbox and cardan inertia | 0.01
[kgm’]

Wheel inertia [kgm®] 4* 1
Wheel radius [m] 0.34
Car mass [kg] 1690

Automatic gear ratios [-VI

{4.17,2.34,1.52, 1.14, 0.87, 0.69}

MODEL CALIBRATION

157

| Gear ratio of final gear | 3.46 |

The wheel radius is calculated for 245/45 R18 W saying that the radius is 18”/2 + 0.45%245
=0.338 m.

Engine characteristics at full throttle for a BMW 545i were found at

http://www.e60.net/information/options/engines/N62B44/

480 _ T 260,0
450 Nm @ B3600min-i 245 kW @ 6100min-1
440 - + 240,0
a0 e 220,0
-+ 200,0
360 -
-+ 180,0
320 /—
160,0
280 1—
+ 140,0
240 4+ ——
+ 120,0
200 +—
100,0
160 +—
80,0
120 e e e | ERREAE a i -
+ 60,0
80 / T T 40,0
E | |
Z 40 |- ‘l s S 20,0 §
g g
g ool L 1 | B I P
0 1000 2000 3000 4000 5000 6000 7000

Engine speed [min-1]

BMW 5451 and BMW 645i have the same 4.4-liter V8 engine. The black lines in the plot
above show the torque and power characteristics.

As a first approximation we fit a quadratic characteristic:

tau = tau_O +(tau_max-tau_0)*(1-((w-w_max)/w_max)"2);

The parameter w_max is 3600*27/60 rad/s and tau_max is 450 Nm. Choosing tau 0 to 320
gives the red curve in the plot above.

158

http://www.e60.net/information/options/engines/N62B44/

The velocity and acceleration measurements are stored simply as a csv file

Program Files/Dymola/
Modelica/Library/Design/Acceleration measurements.csv

A B C]
1 time speed dist acc
2 n n n 0.2
3 0.02 0.z n 0.33
191 3.78 B3.1 37 .84 4.14
192 38 B3.4 352 4.16
193 3.82 B3.7 386 4.13

The first row of the file includes the column headings and then the data follow. Dymola
supports plotting of such a csv file. Select “Plot/Open Results...” and a file browser pops.
Use is to select the csv file. The file and its variables appear in the plot browser and can be
plotted in the usual way.

Dymola - Dynamic Modeling Laboratory - ||:|| il

Hle Edit Simulation Plot Animation Commands Window Help
edQs W[¢ B[B o= @|FER TEEI I K«aD
Vaiables | S =TES

SAcceleration measurements 1
é--Dspeed

acc
E-Ddist 6
“Mace
44
2_
T T T T T T T T T T E T
1 2 3 4 5 6

0
[M I I M M I I M ...

Vehicle model

The model we are going to build is available as:
Design.Calibration.Example.SimpleCar

Useful modeling components are found in
Modelica.Mechanics.Rotational

Modelica.Mechanics.Translational

MODEL CALIBRATION 159

Engine

gearBox=4.17 finalDriveGear=3.46
| | [|
enginelnertia J = cardaninertia

ipL _-ri AL =t T
e il
4 1=0.4 3 3=0.01 .:—‘

engineTorque

i (2] a
w heellnertias carBody
L I -, S 8
—
TJ:T4T w heel=1/R —_—

To the left there is the engine driving the gearbox, which is connected to the cardan system
giving a final drive to the four wheels. The rotational motion of the wheels results in a
translational motion of the car. Let R be the wheel radius then 1/R gives the ratio between
the driving rotational motion and the resulting translational motion where R is the wheel
radius. The model defines

parameter Real R=0.34;

and binds the parameter wheel.ratio = 1/R. Setting of parameters are indicated by the
diagram. Additionally the mass of the car, carBody.m is set to 1690+70+50 kg to include the
weight of the driver and measurement equipment.

The quadratic torque characteristics at full throttle is modeled by extending from
Modelica.Mechanics.Rotational.Interfaces.Partial SpeedDependent Torque

and adding the quadratic torque characteristics and the definitions of its parameters

model Engine

extends
Modelica.Mechanics.Rotational . Interfaces.PartialSpeedDependentT
orque;

parameter Modelica.Slunits.Torque tau_O;

parameter Modelica.Slunits.Torque tau_max;

parameter Modelica.Slunits.AngularVelocity w_max;
equation

tau = - (tau_O + (tau_max-tau_0)*(1-((w-w_max)/w_max)”"2));
end Engine;

Please, note minus sign for the torque to specify that the torque is a driving torque and not a
reaction torque.

The parameters of the component engineTorque are then set as shown by its parameter
dialogue

160

engineTorque in Design.Calibration.Example:

2%

| | Add modifiers
—Component Icon
Name IengineTorque Engine
Commentl Q«:
~Model T
Path Design.Calibration. Examples.Utilities.Engine
Comment
—Parameters
tau_0 320 » N.m
tau_max 450 » Nm
W_max 3600"2*Modelica.Constants.pi/60 » rad/s

ok | o

| Cancel

Validation of the nominal model

Let us first check how the model with nominal parameters compares with measured data.
Validation is set up very similar to calibration. A basic difference is of course that no
tunable parameters need to be specified for the validation. The functions described in this
document are parts of the Design package. To load it, select File/Libraries and click Design.

To set up the calibration, select Design.Calibration.calibrate in the package browser. Click
right mouse button, select the command “Call function...”

Packages

= (JDesign
= [Calibration

2 P calibrate -
(7 periurbParam Call Function...

- (7)sweepParam Open Class in This Window
-(7)sweepTwoPa Open Classin New Window
- (T)checkCalibrat Edit .
Bl] Examples S Check
_ITEQ Search...
R B e |
| Components Info 1

The following menu pops:

MODEL CALIBRATION

161

(7)calibrate [setup I Tree data |
® Tuner parameters ’7Muda\ | » Modelica name ofthe model to be calibrated
-rr Free startvalues

=I-Calibration data

i FZ cases

inputCouplings

5. E resultCouplings
4% Integrator
3 Optimizer

0K | Info | CnpyCaHl Execute | Close |

To specify the model to be calibrated, click on the Edit icon to the left of the input field. A
package browser pops up. Use it to select the model.

Select model 2| x|

Packages ILI
éﬁ]Design J
=l [JCalibration
' [CJ]Examples
0K | Cancel |

Click OK! The model is now translated in order to gather information needed to build
browsers and selectors to support the remaining setting up of the calibration task. If Dymola
already has a translated model, then this model appears as the default model.

2%

(f)calibrate
28 52 selup
@ Tuner parameters
-rr Free startvalues
=I-Calibration data
L EEcases

inputCouplings

5. E resultCouplings
4% Integrator
3 Optimizer

[setup I Tree data |

Inputs
’7Muda\ |

"Design.Examples LongitudinalCar SimpleCar" 3

Modelica name of the model to be calibrated

0K | Info | CnpyCaHl Execute | Close |

The next task is to specify the measurements and how they are stored. Consider the tree
browser to the left. Select cases under Calibration data.

162

2]
() calibrate £F cases
= ﬁsetup Rows |1 i‘
@ Tuner parameters
L == Free startvalues Experiment files| Task |Star1T|me |Stop Time |
E| Calibration data 1 L" l |
cases
E inputCouplings
E resultCouplings
% Integrator
5 Optimizer
Selectcase parameters
oK | Info | Copy Call | Execute | Close |
To introduce an experiment file, click on the Edit icon of the first element in the
“Experiment files” column. A file browser pops up. Use it to select the file
Program Files/Dymola/
Modelica/Library/Design/Acceleration measurements.csv
20|
(fcalibrate EF cases |
= ﬁsetup Rows |1 i‘
@ Tuner parameters
. rr Free startvalues Experimentfiles | Task | Start Time | Stop Time |
' Calibration data 1 |Design/Examples/Acceleration measurements.csv" | =l | |
cases
inputCouplings
EE resultCouplings
% Integrator
E5 Optimizer
Selectcase parameters
oK | Info | Copy Call | Execute | Close |

If we had had more measurement files we had increased the number of rows and selected
more measurement files. In this case the measurements are stored in a csv file as described
above. Dymola supports some common ways of storing measurements, see further below.
An advanced user can replace the calibration data input with a routine accessing data in
different formats, without having to change the underlying calibration routines.

The different cases may need individual parameter settings or individual initial values for
some of the states. Recall that we are to use the measurements from the time interval 3.8-6
seconds when second gear is engaged. Thus we need to use the gear ratio of the second gear
and an initial velocity. To enter this information, click on “Select case parameters”. Use the

browser to select gearBox.i and carBody.v

MODEL CALIBRATION

163

20|

Component I;l
é--carBody
_ ;Y
é--gearBox

O - |

OK | Cancel |

Click OK. The default values appear in the new columns.

Design.calibrate

2l
() calibrate EF cases |
= ESE‘UF] Rows |‘I ﬂ
L. @ Tuner parameters
rr Free startvalues Experiment files | Task | Start Time | Stop Time | carBody.v | gearBox.i |
E-Calibration data 1 lDes\gru'Examp\es]Acce\eral\un measurements csv" I Calibrate LII -1e100 I 12100 I DI 417‘
EE cases

E inputCouplings

EE resultCouplings
i, % Integrator

- 55 Optimizer

Selectcase parameters

oK | Infa Copy Call Execute Close

From the measurement file we can find that the velocity at time 3.8s is 68.4 km/hour =

68.4/3.6 m/s.
A | B [¢ | D |
1 |time speed dist acc
191(3.78 68.1 37 84 414
192(3.8 68 4 38.22 4 16
193(3.82 68.7 386 413

Enter this value for carBody.v and set gearBox.i to have the value of the second gear,
namely 2.34. Enter also start time (3.8) and stop time (6) and set task to Validate.

164

Design.calibrate 2l x|
() calibrate £F cases
= ﬁsetup Rows |1 i‘
@ Tuner parameters
~~ Free start values Experiment files | Task | Start Time | Stop Time | carBody.v | gearBoxi |
E-Calibration data 1_|Deswgn[Examp\es]Ac:e\eranon measurements.csv" | Validate ;Il 38 | 6 | 68.4/3.6 | 234 \
EE cases
EZ inputCouplings
resultCouplings
- & Integrator
: 5 Optimizer
Selectcase parameters
oK | Info | Copy Call | Execute | Close |

The files may include input signals to drive the model, parameter values to be used and
measured data that the model shall reproduce. In this case the file includes measured speed,
distance and acceleration for each 20 ms in the time interval 0-6.24 seconds. The
acceleration measurements will be used for the calibration criterion. To specify that click on

resultCouplings in the browser to the left

2lx
(Ticalibrats EZ resultCouplings |
& ggsewp Dessipion
@ Tuner parameters ’7Matched variables in file
= Free startvalues
&-Calibration data Rows [1 El
e variable |data | scale | offset | active |wa\ght |
EE inputCouplings | I I | T e =l 1
43 Integrator
EFOptimizer
Couple file datal
oK | Infa Copy Call Execute Close
Click on “Couple file data”.
MODEL CALIBRATION 165

20|

Component |Data name I;l
E-carBody

- §
--der(s)
L
B-flange_a
B-flange_b
- M1

-

- der(v) "acc" |

-3

[#-gearBox "time"
#-engineTorgue "speed"
Ildistll

Use the browser to select the car acceleration, carBody.der(v), and then click to the right to
see the names of the data series in the input files. Select “acc”. We could also have chosen

carBody.a, because carBody.a = carBody.der(v). Click OK.

2lx|
(7 calibrate EE resultCouplings |
= @selup D e
I~ @ Tuner parameters (Mamhed variables in file
= Free statvalues
ErCalibration data Rows [1 El

= cases variable |data | scale | offset | aclive |we\ght
inputCouplings 1 "carBody.der(v)" | "acc” | |] =l
= resultCouplings
4, % Integrator
B Optimizer

Couple file data |

oK | Infa Copy Call

Close

We have now specified that the difference between carBody.der(v) and the data column
“acc” shall be used as the criterion for calibration. If the measured data are given in some
unit different than that used in the model, the scale column allows scaling of the

measurements: variable = data * scale + offset

In case the deviations of several variables shall be used to specify the criterion, the weight

column allows the user to give them different weights.

The model SimpleCar has no inputs. In case the model has inputs, click on
“inputCouplings” and couple them to the file data in a similar way as done for the outputs.

The integrator element allows specification of a global simulation interval.

166

2|x|

calibrate % Integrator IAdvanced |
= @selup ip
® Tuner parameters Integrator method parameters for all cases
-rr Free startvalues
Simulation Interval
=I-Calibration data
H EF cases lrstanume » 5 Starttime of simulation
E EEinputCouplings Stop time » s Simulation stop time
E resultCouplings
3 Optimizer

0K | Info Copy Call Execute Close

To perform the validation, click Execute.

Case 1 (used for Validation)
55

— Reference carBody der(v}

504 — Calibration carBody.der(v)

4.5

4.0

3.8+

3_[] T T T T T T T T T T
4.0 44 4.8 52 5.6 6.0

The result is plotted above. The curves have similar shapes, but there is an offset. The model
gives a higher acceleration than measured. This may make you think of losses not being
modeled. In the next section we will discuss calibration.

Measurement file formats

In the example above the measurements are stored in a csv file as described. Dymola
supports some common ways of storing measurements and allows users to specify their own
storage formats. The measurement files must have the same format.

In case the measurement data are stored in (Matlab 4) mat files, we need to specify the name
of the matrix containing the measurement data to be used and the data are referred by
column number. The acceleration measurements are also available as

Program Files/Dymola/
Modelica/Library/Design/Acceleration measurements.mat

Let use use this file instead.

MODEL CALIBRATION 167

Design.calibrate

2l x|

Info

[o |

() calibrate £F cases
= ﬁsetup Rows |1 i‘
@ Tuner parameters
. m= Free start values Experimentfiles| Task |Star1T|me |Stop Time |
E-Calibration data 1 Calibrate [IJ 12100 | 12100 |
cases
E inputCouplings
E resultCouplings
% Integrator
5 Optimizer
Selectcase parameters
| Copy Call | Execute | Close

As previously, click on cases. Click on the Edit icon of the first element in the “Experiment

files” column. A file browser pops up. Use it to select the file

Program Files/Dymola/
Modelica/Library/Design/Acceleration measurements.csv

Dymola then pops a menu to select the appropriate matrix

Dymola select matrix

Select matrix from file C:/dev/Design/Design/Calibration/Acceleration me

2| x|

asurements.mat

Matrices

Matrix | Type

(0 Acceleration measurements.mat

OB measurments Real [3134]

OK | Cancel |

Click OK.
Design.Calibration.calibrate 2l x|
(T)calibrate EF cases
- [sstup Rows I_I |
@ Tuner parameters
.~ Free start values Experiment files Task | Start Time: | Stop Time |
&-Calibration data 1 |y/Design/Calibration/Acceleration measurements matimeasurments" Calibrate L" -1e100 I 1e100
L 2 cases
EE inputCouplings
resultCouplings
-4, 1 Integrator
EFOptimizer
Selectcase parameters
< |+
OK I Info Copy Call Execute Close

168

Proceed as previously to select case parameters, setting their values and start and stop time.
The specification of result couplings is slightly different, because the data is referenced by
column number. The acceleration measurements is column 4.

20

Component |Data name ILI
=-carBody

g
e ”:5] J

#H-flange_a
#H-flange_b

-7
. i r[v]
-

-gearBox

--ﬂange_a

The result of the coupling now becomes

Design.Calibration.calibrate 2 x|
(T calibrate £E resultCouplings |
E- [fsetup Description
@ Tuner parameters ’7Matched variables in file
=~ Free startvalues
- Calibration data Rows [E
- Fcases e [deta [scale [ofiset [acive [weight [
inputCouplings 1 “CaBody.dertvy” | g | I | =l |
E resultCouplings
1, 1, Integrator
ER Optimizer
Couple file datal

oK I Info Copy Call Execute Close

The data field has “4” instead of “acc”.

The simulation results of Dymola are stored as mat files, which includes information on the
name of the variables. If such trajectory files are used as measurement files then the
information on variable names are used. The user will not be prompted for matrix name.
When coupling inputs or results, the browser will display variable names.

Calibration

The task of a calibration is to tune some parameters to obtain a better agreement between
measured behavior and behavior predicted by the model. Thus, we need to address the

MODEL CALIBRATION 169

question, which parameters to tune. When deciding which parameters to tune, it is good to
consider the question: Which parameter values are most uncertain? In the model above,
friction and losses in the gearbox elements have been neglected. Frictions and other losses
are good examples where calibration is useful. There are for instance losses in both gearBox
and finalDriveGear, however, having only measurements of the translational motion of the
car, it is not possible to decide the individual losses of these two elements. Thus, it is
necessary to aggregate all losses to one element and gearBox is selected, since it has
provisions to model efficiency. The efficiency is given by gearBox.lossTable[1,2], see the
documentation of Modelica.Mechanics.Rotational.LossyGear.

The parameter tau_0 was manually selected to 320, so it is a good candidate for tuning.

Dymola supports an interactive explorative approach to this problem. Dymola has powerful
functions to perform parameter sweeps and to analyze parameter sensitivities and possible
couplings between parameters with respect to the result variables to eliminate irrelevant
parameters and to diagnose over- parameterization. However, let us come back to these later
and first try tuning the two parameters.

First we have to set the task to Calibrate. Click on cases in the tree browser to the left and
set task to Calibrate.

Design.calibrate 2] x|
(7 calibrate EE cases |
el ESEMF] Raws |‘\ ﬂ
® Tuner parameters
o Free startvalues Experiment files | Task | Start Time | Stop Time | carBody.v | gearBox.i |
&~ Calibration data 1 |Design/Examples/Acceleration measurements csv" | Calibrate ;Il 38 | 6 | 68.4/36 | 234 ‘

cases
putCouplings
= resultCouplings
4, % Integrator
B Optimizer

Select case parameters

oK | Infa Copy Call Execute Close

(=) Design.calibrate rd S

Select Tuner parameters in the left browser.

(7 calibrate
- [setup

Descrip
© Tuner parameters (Muda\ parameters and start values to be calibrated

= Free startvalues
E--Calibration data Rows |D El
FE cases
= name active value min max
E inputCouplings
resultCouplings
% Integrator
B Optimizer

Tuner parameters |

Select parameters

oK | Info Copy Call Execute Close

Click “Select parameters”. A menu pops. Select

gearBox.lossTable[1, 2]

170

engineTorque.tau_0

2
Component H

[i‘_l--gearBox

- [lossTable[1, 1]
- I lossTable[1, 2]
- [lossTable[1, 3]
- [lossTable[1, 4]
- [lossTable[1, 5]
H-engineTorque

S ikizu_0

- [tau_max
|:| W_max -
Resetfrom file: [~ Value
0K I Cancel
Click OK.
20

(7 calibrate @ Tuner parameters |
= ﬁsetup D

(# Tuner parameters
h Free start values
- Calibration data Raws [2 |

FE cases
= name active value min max
inputCouplings

) 1 \earBux\ussTableﬂ,ﬁ = | 1
EE resultCouplings 2 "engineTorque tau_0" =] 320
i 1% Integrator
L4 Nteg
B Optimizer

(Muda\ parameters and start values to be calibrated

Select parameters

oK | Info Copy Call Execute Close

Free start values

The start value of a state may be unknown. By including the state as a tuner, the start value
is estimated automatically. However, in case we have several measurement series, it may be
necessary to tune or estimate these initial values individually for each calibration case.
Dymola supports individual tuning of parameters and start values of states and they are
specified as freeStartValues.

MODEL CALIBRATION 171

Design.calibrate 7%
(7 calibrate rr Free start values |
- [setup D
- @ Tuner parameters ’7Frse start values and parameters to be calibrated for each case
g =~ Free start values
- Calibration data Raws [0 B

FE cases

= name
EE inputCouplings
E resultCouplings

active value min max

-, ¢, Integrator
B Optimizer

Selectfree variables

oK | Info Copy Call Execute Close

Such parameters or states are selected by clicking “Select free variables” which pops a
variable selector as when selecting case parameters or tuners. The variable selector includes
parameters and states. These values are also tuned for cases having Task = Validate.

Tune the parameters

It is time to do the first calibration. Click Execute. During the calibration, results are plotted.
After 25 fast iterations, we obtain the result.

gearBox.lossTable[1, 2] 0.794
engineTorque.tau 0. 260.7
criterion 0.218

Case 1 (used for Calibration)
44

Reference carBody deriv)

4.2 1

Calibration carBody der{v)

4.0 4

3.8+

3.6+

344

3.2

A passenger car has normally an efficiency of 0.90 at high gears in normal operation. The
measurements are made at full throttle to give maximum acceleration. It means for example
that the tires are slipping say 4%, which of course is increasing the losses.

It is very easy to add new tuners. Just click “Select parameters” and select new parameters.
By changing active from true to false or vise versa it is easy to experiment with different set

172

of tuners. Having a parameter as an inactive turner is a good way to set a parameter to have
a value different from the value given by the model.

Validation using measurements from first gear

It is recommended to validate against other measuremnts. Unfortunately, we do not have
another measurement series in this case, but for validation we can use the data from the time
interval where first gear is used.

We do this by specifying another case. Click on cases.

Design.Calibration.calibrate

Oca\ihrﬂta EE cases
& fset Fows [1 =
- @ Tuner
Experment files ‘ Task | Start Time | Stop Time: | carBody.v | gearBoxi |
- Fee stat vaues 1 [Acoslerstion messursments csv” ESl| Caibrats]| 38 50 684736 | 234
(= Calibration data
- EZ inputCouplings
EF resultCouplings
n Integrator
=] Optimizer
Select case parameters
0K Info Copy Call Execute Close

Put the cursor in the input field for Row and hit the uparrow keyboard button once to
increase the value by one. You may also use the up arrow of Rows to increase Rows to 2.

Design.Calibration.calibrate

(1) calibrate EE cases
B @setup Rows [2] E|
- (@ Tuner
Expenment fles Task Start Time Stop Time carBody v gearBoxi
- Free start values
1| Acceleration measuremerts csv” EE | Caibrate x| 28 60 62.4/35 | 234
- Calibration data | | =))
EF inputCouplings
EE resuttCouplings
n Integrator
- [Optimizer
Select case parameters
oK Info CopyCal | Beate | Cose |

As previosly, use the Edit button of Experiment files to select experiment file. You can also

copy and paste the file name. Enter the values for start time (2.0),

carBody.v (39.9/3.6) and geraBox.i (4.17) as illustrated below.

stop time (3.0),

MODEL CALIBRATION

173

Design.Calibration. calibrate

Ocahbmte §§ cases
= ffeetp Rows [2 E
- @ Tuner parameters
Experiment files | Task ‘ Start Time ‘ Stop Time: | carBody.v | gearBoux.i
- o Free start values
& Calibration deta 1 |[Acceleration measurements.csv” | Calibrate || 38 6.0 68.4/36 | 234
i p— 2 [Accsleration msasurements csv" E5 | Validate || 2] 3 39936 417
e
EE inputCouplings
e EE resultCouplings
n Integrator
== Optimizer
Select case parameters

0K Infa Copy Call Execute Close

Click Execute! The calibration starts and gives the same results as previously, but also the
plot below for the validation case (the criterion is 13.88).

Case 2 (used for Validation)
6.5

6.0+

5.8+

5.0+

4.5+

4.0+

35 Reference carBody deriv)

Calibration carBody der{v)

3.0 T T T T T T T T T
2.0 245 3.0

The agreement for the interval 2.0-2.7 s is very good. If we rerun the validation having set
the stop time of the second case to 2.7, the criterion is 0.44. As indicated above the tires are
slipping when the car is run to accelarate as fast as possible. If the wheels slip too much, the
anti spin control system gets active and the result is reduced acceleration after 2.7 seconds
as shown by the measured data.

As illustrated, Dymola supports a flexible and incremental way of working. We need not
define this total setup in one step. First we made the model and validated the nominal model
against the measured data, then selected turners and calibrated. Finally we validated the
calibrated model. Dymola also provides support for sentivity analysis as will be discussed
below.

The setup as Modelica code

The calibration setup is represented in Modelica in the following way. It is a function call,
where nested record constructors build the needed input arguments.

174

Design.Calibration.calibrate(Design. Internal _.Records.ModelCalibrationSetup(

Model=""Design.Calibration._Examples.SimpleCar",

tunerParameters={

Design. Internal .Records.TunerParameter(name= "gearBox.lossTable[1, 2]", Value=1),
Design. Internal .Records.TunerParameter(name="engineTorque.tau_0", Value=320)},

calibrationData=Design.Calibration. Internal .Dynamic_common(
Design. Internal .Records.DynamicCommonCal ibrationCases(
experimentNames={""Acceleration measurements.csv",

task={1,2},

"Acceleration measurements.csv'},

startTime={3.8,2},

stopTime={6.0,3},
parameterNames={"'carBody.v","'gearBox.i"},
parameterValues=[68.4/3.6,2.34; 39.9/3.6,4.17]),

resultCouplings={Design. Internal .Records.DynamicCalibrationResultCoupling(

variable="carBody.der(v)", data="acc')}),

integrator=Design. Internal .Records.Calibrationlntegrator(stopTime=6.2),

optimizer=Design.Internal .Records.Optimizer()))

Saving the setup for reuse

Note: This cannot he
done for SimpleCar,
because it is read-only

After an execution of a command we can save it in the model for later reuse

Commands/Add command. A menu pops up

(=1 Dymola: Add Command for Desig 2| x|

F%Run scripté IC:,fdevaesignfDesignfCaIibrationF.mos

& Call function |1izer=Design.InternaI.Records.OptimizerU]]

Before execution model must be
& Mo pre-condition

¢ Translated

¢ Simulated

™ Promptfor arguments

OK | Cancel

Description I

. Select

Tick “Prompt for arguments” and enter a description, which will be used in the commands
menu. Since the model needs to be translated in order to get the select browsers we tick that
model shall be translated. This is not critical, butter only a matter of convenience. If we do
not tick Translated, then when a browser need s to be popped, Dymola will give a prompt
pointing out that the model needs to be translated. If we just select the command and then
click Execute there will be no prompt, but function is executed as expected. The model is

MODEL CALIBRATION

175

translated when needed. The edit button next to the function call allows you browse or edit
the function call once more.

=) Dymola: Add Command for Desig R
 Run script IC:,fdevaesign,fDesignfCaIibrationF.mos

f+ Call function |1izer=Design.Internal.Records.Optimizer(]]]

Before execution model must be
= Mo pre-condition

¢ Translated

" Simulated

¥ Prompt for arguments

Description |Ca|ibration with validation

OK | Cancel

Click OK.

A function call menu as for calibrate has an Execute button. Clicking this button start an
execution of the function and the menu stays popped. If we click Close, the menu is closed
without any execution. If we click OK, the function is executed and the menu is closed. You
click OK by mistake when you meant Execute, you can fix the situation. Click in the
command input line. Press the up arrow once to scroll back in the commands given. Click
right mouse button and select “Edit function Call” and the function call menu pops. This can
be done for any function call in the command log.

Reusing a setup for a similar operation

A setup can be reused for a similar operation. Assume that we just have made a calibration.
The menu is then

=) Design.Calibration.calibrate 2|

(T calibrate 1 setup | Tree data |
S8 =52 setup Inputs
Tuner parameters ’VModel | "Design.Calibration.Examples.SimpleCar" + Modelica name of the model to be calibrated
== Free startvalues

E| Calibration data
| b fPeases

EZ inputCouplings
EE resultCouplings

i, 1, Integrator
E5 Optimizer

oK I Info Copy Call Execute Close

176

Select calibrate (at the top in the tree browser), click right mouse button to get the context

menu.
=) Design.Calibration.calibrate 2 x|
[Y— | |
|T calibrate

E- [setup
L @ Tun PerturbParameters

tion
te model to measured data

=~ Fre¢ sweepParameter

Calbra qweepTwoParameters
EE checkCalibrationSensitivity

EE resultCouplings

% 1 Integrator

E5 Optimizer

oK I Info Copy Call Execute Close

The menu offers a selection of analysis and plotting functions that can exploit the calibration
setup. We will descibe these functions further below.

Analysing parameter sensitivities and dependencies

Dymola provides a set of functions to analyze parameter sensitivities and dependencies.
Below the functions perturbParameters, sweepParameter, sweepTwoParameters and
checkCalibrationSensitivity will be described.

Sweep one parameter - sweepParameter

The function sweepParameter sweeps a tuner and plots the responses.
As an example select the command “Calibration with validation” of the model
Design.Calibration.Examples.SimpleCar

Select calibrate (at the top in the tree browser), click right mouse button and select
sweepParameter. The menu changes since additional parameters needs to be provided.

Design.Calibration.sweepParameter 2l x|

sweepParameter sweepParameter ITraadata |

& {setup Fsmw n

Tuner parameters Sweep one parameter and plotresponses

=~ Free startvalues

Inputs

Calibration data

sweepVariable j » Parameter to sweep (subset of tuner parameters)

cases

values b Parameter values lo sweep

inputCouplings .

"gearBoxlossTable[1, 2]"
"engineTorque.tau_0"

E resultCouplings

i, ¢ Integrator
ER Optimizer

oK I Info Copy Call Execute Close

MODEL CALIBRATION 177

Select gearBox.lossTable[1,2] in the combobox of sweepVariable and select Equidistant
grid for values

2]

Equidistantgrid |

—Description

Generate equidistant points in an interval

—Inputs
minimumValue 05 ¥
maximumValue »
numberPoints Gl

Enter minimum and maximum values and number of points and click OK. Click Execute.
The result is plots of the result variables, which in this case is the acceleration. As expected,
higher efficiency gives higher acceleration.

8.0
754
7.04
6.54
6.0+
- 5.5+
Ky
E 5.04
4.54
404 /
carBody.der(v) // gearBox.lossTable[1. 2] = 0.50
35 carBody.der(v) // gearBox lossTable[1, 2] = 0.60
carBody.der(v) // gearBox lossTable[1. 2] = 0.70
10 carBody.der(v) // gearBox.lossTable[1. 2] = 0.80
-] carBody der(v) // gearBox.lossTable[1. 2] = 0.90
—»— carBody.der(v) // gearBox lossTable[1. 2] = 1.00
25 T T T T T T T T T T T T 7 7 7 7 ; 7 7 T 7

4.0 4.5 5.0 545 6.0

There is also a corresponding plot for the validation case. Moreover, all results of the
simulations are available for access in the plot browser

178

o
Variables [Values
1.2]=0501
1.2]=0602
1.2]=0703
1.2]=05804
1.2]=0905
1.2]=1006

gearBox.IossTable

FgearBoxlossTable
gearBox.IossTable
gearBox.IossTable
gearBox.IossTable

— e e e e

HgearBoxlossTable

‘ N

Advanced

It means that all Dymola’s plotting facilities can be used to produce other plots from the
sweep. It is for example easy to get a similar plot with the velocity of the car. Click on
Advanced and tick Compare results. Then select carBody.v

Plot and initialization |

Variables [lVaI AI

BcarBody
Hflange_a
Hflange_b
.Oa
-[]der(s)
-CIder(v)
0L
.Om
.Os

Niv
Heardanlnertia

<

: IﬁLT_I_I_II

Advanced
p= - W
Constants Time varying I Online
v Original ™ Difference I Compare Results
Search Filter:
Time:

and the plot becomes

MODEL CALIBRATION 179

16
carBody.v // gearBox lossTable[1, 2] = 0.50
carBody.v // gearBox.lossTable[1, 2] = 0.60
124 carBody.v // gearBox.lossTable[1, 2] = 0.70
carBody.v // gearBox lossTable[1, 2] = 0.80
carBody.v // gearBox lossTable[1, 2] = 0.90
— g | carBody.v// gearBox.lossTable[1. 2] = 1.00
w
E
44
0
T T T T T T T T T T T T T T T T T T
4.0 45 50 55

The velocites are in m/s, but it is easy to get them in km/h. Select Plot/Setup

20

Signals Iliﬂes ||=egend |thjons |Bange |

—Signal name

carBody.w -
carBody.v

carBody.w

rarRade

absolute velocity of component [m/s]

—Legend
carBody.v [m/s]
Reset |
—Properties
Unit myfs Display unit |mjs =~
Minimum Maxim
Vertical 0 :
Horizontal 38

File: gearBox lossTable[1, 2] = 0.50.mat
MNumber of data points: 504

0K | Apply Cancel

Select Display to km/h. The plot becomes now

180

(km/h]

60

504

40

304

carBody.v {/ gearBox lossTable[1, 2] = 0.50
carBody.v // gearBox.lossTable[1, 2] = 0.60
carBody.v // gearBox lossTable[1, 2] = 0.70
carBody.v // gearBox lossTable[1, 2] = 0.80
carBody.v // gearBox lossTable[1, 2] = 0.90

—— carBody.v // gearBox lossTable[1, 2] = 1.00

55 6.0

Sweep two parameters - sweepTwoParameters

The function sweepTwoParameters sweeps two tuners and produces a 3D plot of the

criterion.

As an example select the command “Calibration with validation” of the model

Design.Calibration.Examples.SimpleCar

Select calibrate (at the top in the tree browser), click right mouse button and select
sweepTwoParameters. The menu changes. Since we have just two tuners, we select the
efficieny as sweepVariableX and 11 values in the interval 0.5-1. We select tau 0 as
sweepVariableY and 11 values in the interval 200-300.

(T)sweepTwoParameters

E| @setup
% Tuner parameters

t-rr Free startvalues
=-Calibration data
FEcases

EZ inputCouplings
resultCouplings

1 Integrator
R Optimizer

O sweepTwoParameters I Tree data |

Design.Calibration.sweepTwoParameters

2%

Description

Sweep at mosttwo parameters and plot the criterion in 3D

Inputs
sweepVariableX
valuesX

sweepVariableY

valuesY

“gearBuxIussTab\e[T‘Z]"j’

Design.Internal. Equidistantgrid(0.5) j 3

”engmeTorquetau_D“j»

Design.Intemal Equidistantgrid(200, 300) j 3

Values to sweep

Values to sweep

oK I Info

Copy Call

Execute Close

Click Execute and Dymola produces the plot below

MODEL CALIBRATION

181

Response to parameter perturbations -
perturbParameters

The function perturbParameters plots the responses to perturbations in the tuners.
As an example select the command “Calibration with validation” of the model

Design.Calibration.Examples.SimpleCar

Select calibrate (at the top in the tree browser), click right mouse button and select
perturbParameters. The menu changes. Click on perturbationParameters

IS5 Design.Calibration.perturbParameters 21 x|

(T perturbParameters @ perurbationParameters |
5 1 =
H @SE i Raows |2 3’
& Tuner parameters
rr Free startvalues active Change Relative
£-Calibration data |gearBoxlossTable(1.2] | - 0.1 ~
EECases engineTorque.tau_0 l = -

EZ inputCouplings
EE resultCouplings
4% Integrator
EB Optimizer
- # perturbationParameters

oK | Info Copy Call Execute Close

182

[m/s/s]

The function exploits the setup of calibration, but needs some additional input,
perturbationParameters, which by default are the same as the tuner parameters of setup.
When executing the function it perturbs the parameters in turn. The default pertubation is
10%. Note that the efficiency has a nominal value of 1 meaning a default perturbation to 1.1,
which is not a physical value. Thus, we change it to —10% to get an efficiency of 0.9. The
results are plots of the result variables as shown below.

5.2

5.0

4.8

4.6

4.4

4.2

4.0

carBody.der(v) // Referencel
carBody.der(v) // gearBox.lossTable[1, 2] = 1.00-0.10
carBody.der(v) // engineTorque.tau_0 = 320.00+32.00

3.8

T T T T T T T T T T T T
4.0 4.5 5.0 5.5 6.0

Both tuners influence the acceleration. The responses for the validation case are also plotted

MODEL CALIBRATION 183

carBody.der(v) // Reference2
carBody.der(v) // gearBox.lossTable[1, 2] = 1.00-0.10
carBody.der(v) // engineTorque.tau_0 = 320.00+32.00

7.6

7.2

6.8

6.4

[m/s/s]

6.0

5.6

5.2+

2.0 25 3.0

Check if tuners can be calibrated -
checkCalibrationSensitivity

When tuning parameters from measurements, a basic question is “Which parameters can be
estimated from the measurements available?”” Changing a parameter to be estimated must of
course influence the output. However, this is not enough. Two or several parameters may
influence the result in a similar way such that it is not possible to estimate them individually.

Assume that our nominal model is the correct model and we had used it to produce a
“measurement” file. If we make small perturbations of the values of some parameters and
use the “measurement” file for calibration, we would like the result of the calibration
procedure to be that the perturbed parameters are tuned to their original values. The function
checkCalibrationSensitivity checks if this is the case. If not, it lists tuners that do not
influence the criterion and linear combinations of parameters where changes of the
appearing parameters do not influence the criterion, if the linear expression remains constant.

As an example select the command “Calibration with validation” of the model

Design.Calibration.Examples.SimpleCar

184

Select calibrate (at the top in the tree browser), click right mouse button and select
checkCalibrationSensitivity. Click Execute! Dymola outputs a positive message

The calibration criteria are sensitive for small variations
around the nominal values in all tuner parameters and in all
their linear combinations.

Let us try some other tuners. Can we tune the engine and cardan inertia? Select them as

tuners.
Design.Calibration.checkCalibrationSensitivity rd
checkCalibrationSensitivity # Tuner parameters |
= fRsetup Description
® Tuner parameters ’VModel parameters and start values to be calibrated
=~ Free startvalues
Calibration data Rows |21 i‘

name active value min max

mmeuuml_ﬂQS 1 “anginelnertia.J" = | 04
T resultCouplings 2 | "cardanlnertia.J" =l 0.01
i, ¢ Integrator
ER Optimizer

Select parameters

oK I Info Copy Call Execute Close

Click Execute! Dymola outputs the message

The calibration criteria are insensitive for small variations
around the nominal values in the following linear parameter
combinations:

-enginelnertia.J-0.1826*cardanlnertia.J

The message says that if we change the two values, but keep

-enginelnertia.J-0.1826*cardanlnertia.J

constant, then the criterion does not change. In other words we cannot tune the inertias
individually, but we can tune the combination given. The engine and the cardan are rigidly
coupled. It means that the inertia for those to bodies sensed from the engine is

Je+3, /i

where J, is the inertia of the engine and J, is the inertia of the cardan and is i is the gear ratio.
Using i =2.34, we get

Je+3,/i%=0,+0.1826J,

This is consistent with what Dymola told us. In fact the engine, cardan, wheels and the car
body are rigidly connected. It means that we can only estimate a total inertia for example
reduced to the engine side or a mass equivalent reduced to car body. Let us specify the
inertias and the car mass as tuners.

MODEL CALIBRATION 185

Design.Calibration.checkCalibrationSensitivity

A
(T checkCalibrationSensitivity # Tuner parameters

= ﬁsetup Description
@ Tuner parameters ’VMudsl parameters and start values to be calibrated
== Free startvalues
J-Calibration data Rows |4 i’
EEcases name active value min
EEmputCuup\mgs 1 "enginelnertia.J" true =i 04 E
£ resultCouplings 2 "cardaninertia.J" 0.01
41 Intagrator 3 “wheelinerias J' 1 00 E100
- E Optimizer 4 "carBody.m" 1810 0 1e+100
Select parameters

oK I Info Copy Call Execute Close

Clicking Execute gives the expected answer

The calibration criteria are insensitive for small variations

around the nominal values in the following linear parameter
combinations:

-enginelnertia.J-0.1826*cardanlnertia.J-0.0153*wheel Inertias.J-
0.0018*carBody.m

If we multiply by —1, this is the total inertia reduced to the engine side.

186

Design optimization

Design optimization

Introduction

Dymola includes features to perform integrated computer experiments with Modelica
models. This document describes the features to determine improved values of model
parameters by multi-criteria optimization based on simulation runs. The functions and
models described in this document are parts of the Design.Optimization package. The
Optimization option is required. However, the optimization examples given below can be
run without the Optimization option.

Consider a Modelica model describing a technical system that shall be improved. Such a
model includes typically many parameters that can still be changed, for example the spring
constants of a car, the gear ratio of a gear box, or parameters of a controller. Some
parameters might be determined by using heuristic design rules, by adjusting them by “trial
and error” using simulation runs or by using simplified linear models and apply the well
established synthesis procedures for linear systems.

Design optimization is an approach to tune parameters such that the system behavior is
improved. The parameters that are tuned are often referred to as tuners. Mathematically, the
tuning procedure is formulated as multi-criteria parameter optimization: Parameters are
calculated to minimize criteria which express in mathematical terms what “improvement”
shall mean. Criteria values are usually derived from simulation results, e.g., the overshoot or
rise time of a response, but they can also be derived by other analysis procedures, such as
frequency responses or eigenvalue analysis.

DESIGN OPTIMIZATION 189

The typical setup described below consists in defining the most important operating points
of a model, and to define criteria for every operating point. This means that usually several
simulation runs are needed to compute the criteria values. This setup is called multi-criteria,
multi-case optimization. The different operating points are the “cases” under consideration.
The major goal is to minimize all criteria and/or to keep them below required bounds. Other
types of demands, e.g., criteria that shall be maximized, have to be reformulated.

Since several criteria shall be minimized there is usually no unique mathematical solution.
Instead, the criteria have to be weighted with respect to each other and the goal is to find the
best compromise solution that minimizes all criteria in the “designer’s sense”. The
“weighting” technique described in the next sections is a proven technology developed by
DLR and it has been applied in many industrial projects in the last 10 years.

To load Design.Optimization, select File/Libraries and click Design.

Packages
=IDesign
=J Calibration
=JExperimentation
=JInternal
29 Optimization
optimize
=JExamples
= Criteria

The function Design.Optimization.optimize is the main function for design optimization via
multi-criteria, multi-case parameter optimization. There is also a set of functions and of
models to define criteria. For parameter studies in general, see Design.Experimentation. To
determine model parameters using measurement data, see Design.Calibration.

This document uses the design of a control system for a very simple model of an F14
aircraft (see figure below) to illustrate how a basic design optimization task is set up and
executed, and how the setup is stored for later reuse.

190

First optimization setup

In this section the first setup of the design optimization of the F14 controllers is shown.

Open model Design.Optimization.Examples.ControllerDesign F14.

criteria
» alpha_c
4» delta
4’ alpha
const from_deg
deg controller aircraft
| >_>_-.>__’ alpha_c actuator alphia | [
rad . ¢
k=alpha_c_deg alpha delta f_» >—’ AT
4 hizFilot

’—’ q =12 theta

Component “aircraft” contains the dynamic equations of the aircraft. Component
“controller” is the control system for the longitudinal motion, and component “criteria”
contains the criteria computation.

This model is used for simulation and analysis of the closed loop step response of the
longitudinal motion of a very simple F14 aircraft model. A linear controller with fixed
controller parameters is used for tracking the reference motion of the angle of attack, alpha.
The goal is to determine the controller parameters such that the step response is reasonable
in the operation region of the aircraft.

Simulate this model for 10 s and plot alpha ¢ deg (= commanded angle of attack),
alpha_deg (angle of attack), q_degs (pitch rate) and delta_deg (elevator deflection):

DESIGN OPTIMIZATION 191

(Wrlot =10/

alpha_degy alpha_c_deg
1.5
TN
T 05
=
0.0
-05 T T T T T T T T T T — T T T
0.0 25 2.0 7.5 100
—q_degs
4
—E
o
b
=
= 04
-2 T T T T T T T T T T T T T T T
0.0 25 5.0 75 100
deta_deg
4
a2
5 o
-2
-4 T T T T T T T T T T T T T T T T
0.0 25 5.0 75 100
The controller is shown in the next figure:
al p ha—c prefiter
T=Te
gainl
k=Hf
alpha
integrator add
feedhack Ly delta
1 4 +1
- / ol B
k=Ki
-
k=K
q

T

192

The values of the controller parameters are Kf = -6, Ki =-2, Kq = 0.5. The desired reference
value for alpha is alpha c_deg = 1°. The initial value for alpha(t) is alpha(0) = 0. This
arbitrarily chosen stabilizing set of controller parameters leads to a large overshoot of alpha
and a significant maximum elevator deflection. The design objectives will be to reduce
overshoot of alpha below 1 % and to reduce the maximum elevator deflection below 2°.

The design problem is now translated into a setup for optimization based parameter tuning.
In the “Commands” menu in the toolbar you can find all setups described in this tutorial. We

will perform now the setups manually. Right click on function “optimize” in the package
browser and select “Call Function ...”:

ControllerDesign_F14 - Design.Dptimization.Examples.ControllerDesign_F14 - [Diagram]

8 File Edit Simulation Plot Animation Commands Window Help

=10l x|
=18 x|

|zmas|e|/oorams: o i =|n-« » sjlaEEZ[1500 -]

Packages
s&Modelica Reference
= Modelica
Unnamed
=JDesign
= Calibration
@ JExperimentation

cionst

criteria

from_deg

#JInternal
=] Optimization

deg controller

sC1Examples Call Function...

» - ’ alpha_c

rad

alpha delta

Open Class in New Window

©J Criteria Open Class in This Window e

> alpha_c
—> delta

—> alpha

aircraft

actustar

T=Ta

alpha

theta

Edit g
= Check
Q Search...
B _® | €« Close
Info

vl

‘ Modeling | ¥ Simulation |/

In the appearing dialog window, the model name of the last translated model is
automatically inserted (there is also a browser for selecting the model):

DESIGN OPTIMIZATION

193

x|

1= Design.Dptimization.optimize

D optimize Y setup |Tree data
&\ setup Inputs

~ @ Tuner parameters Modelica name of the

E3caseParameters Model | "Design.Optimization.Examples.ControllerDesign_F14"ES» model used for the

=T caseCriteria optimization

#-EgcaseNames

- EEcases

~mldemands
Lrintegrator

- Egoptimizer

OK | Info Copy Call| Execute Close

Select “Tuner parameters” in order to define the model parameters that shall be determined
by the optimizer.

2 Design.Optimization.optimize 2lxl
() optimize @ Tuner parameters
=V setup -Description
@ Tuner parameters Meodel parameters to be optimized
-ga caseParameters
-7 caseCriteria Rows |0 il
v caseNames name [active [value [min [max [unit
EE cases
~Mmldemands
Liintegrator
- Eg optimizer
Select parameters

OK | Info Copy Call| Execute Close

By clicking on the “Select parameters” button a variable tree browser of the selected models
opens. Select the controller parameter Kf as a tuner that is being optimized:

194

I=IDesign.Optimization.optimize

@ optimize
=\ setup

~eacaseParameters

#- T caseCriteria

&g caseNames

- EE cases
mldemands

~vintegrator
EBoptimizer

& @ Tuner parameters

| b

Component
-0 alpha_c_deg
g
O Ki
Kf
] Kq
Wl
-0 Ma
-0 Md
0O Mq
-0 Ta |

Reset from file: I value

Cancsl

The actual tuner value and the corresponding minimum and maximum values as well as the
unit (if defined in the model) are read from the last simulation run

2%
@ Tuner parameters |
- Description
Model parameters to be optimized
Rows |‘I il
name active |value min max unit

1 K" B -6 -10 0

Select parametersl

OK | Info Copy Call| Execute Close

Note, minimum and maximum values should always be defined for tuner parameters in
order to ease the task for the optimizer.

Optionally, case parameters can be specified to define the “operating conditions”. Here,
parameter “alpha_c_deg” is selected from the tree browser via button “Select parameters”:

DESIGN OPTIMIZATION 195

2 Design.Optimization.optimize

() optimize

&\ setup

@ Tuner parameters
#-eg caseParameters
&% caseCriteria
#-ggcaseNames

Ez cases 1 I"alphafcfdeg“ "deg”
~Mmldemands
Liintegrator
- Eg optimizer
a _— Select|

21X

g= caseParameters

- Description
Model parameters defining one case (e.g. operating point)
Rows |1 il
name unit

OK | Info Copy Call| Execute Close

The value of “alpha_c_deg = 1” of this operating conditions has to be given under “cases”:

|=IDesign.Optimization.optimize 21x]
D optimize FZ cases |
&V setup - Description
PG R LTI [case, caseParameters] matrix defining the different cases
#egcaseParameters
T caseCriteria Rows |1 4/ cColumns |1 =
= caseNames alpha_c_deg
EE cases ﬁ
~[ldemands
Luintegrator
-~ Eg optimizer
>>>|
J - Import | Load | Save | Plot

OK | Info Copy Call Executel Closel

In the model ControllerDesign F14, criteria blocks from the Design.Criteria sublibrary are
used to compute how well the controller works (see next figure). In the F14 model, for
example the criteria block “Criteria.MaximumDeviation” is used with the component name
“maximum” (see figure below). Since in the F14 model the “maximum” block is in a block
called “criteria”, and the criterion is always the output y from a criteria block, the criterion
of the maximum deviation is accessed as “criteria.maximum.y”.

196

to_alpha_c settlingTime
feedback

rad
> D>
= A

maximum

to_delta ot T
+1> — E—

k=0
deg

booleanStep

CJ Criteria

wJExamples T sversheot

wfTtRiseTime
= Overshoot
to_alpha riseTime

i SettlingTime rad
#EtMaximumDeviation - mé
-F@IntegratedSquaredDeviation o9

In order to access this variable a bit easier, in the top level text layer of the F14 example an
alias variable “maxElevator” is defined as:

output Real maxElevator(unit="deg”) = criteria.maximum.y;

In other words, “maxElevator” is the maximum deviation of the elevator signal from zero.
In the variable tree browser of “caseCriteria” the used criteria might be defined by selecting
again variables (here: “overshoot” and “maxElevator”):

Design.Optimization.optimize

@opﬁmize T caseCriteria
s U setup Description
® Tuner parmeters Criteria definitions for one case
EHcaseP
s
o :
caseNames name active criteria criterionUsage unit
?Cases 1 "overshoot" | v| ~|E| ~| "deg"|
|ﬁ|demands 2 | "maxBlevator’ | ~| ~IEE| v "deg”|
Hin{egﬁﬂnr
%Um\mizer
oK] [Info] [Copy Call] [Execute] [Closs]

The default value in column “criteria” of the above menu is “FinalValue”, i.e., the final
value of a variable in the model is used as criterion. Alternatively, this pop up menu also
allows selecting other criteria that are not defined in the model but are deduced from
simulation results. In some cases this is more convenient. Criteria based on linearization of
the model around an operating point (e.g., maximum real part of all eigen values) can only

DESIGN OPTIMIZATION 197

Design.Optimization.optimize

be selected from this menu and cannot be defined in the model (this function criterion is not
yet supported). Column “criteriaUsage” remains unchanged for the moment.

As already mentioned, it is possible to define multiple cases representing, e.g., different
working conditions. We could provide different names for them, but for our first
optimization run we simply use the default name.

@ optimize

E| U setup

- @@ Tuner parameters
(- B caseParameters
(- W, caseCriteria
B .

EE Cases
IE' demands

—.
4, t, Integratar

== optimizer

2]
ER caseMames
Desciiption
Names of the different cases
Rows |1 ﬂ
name acthive

| =]

ok I Infa | Copy Call | Execute | Claze |

Since we are using several criteria, they have to be weighted with regards to each other. In
optimize(), the value “criterion / demand” is minimized, i.e., “demand” is used as scaling
factor of “criterion”. A demand value has the same unit as the corresponding criterion. For
this first setup, we use a demand value of 0.01° for the overshoot (=1 % overshoot) and 2°
for the maximum absolute elevator deflection:

lesign.Optimization.optimize

@opﬁmize lEl demands |
s U setup Description
@ Tuner parameters [case, caseCriteria] matrix defining the demand values used for scaling
EHcaseP
T, caseCrtera Rows [1 | Columns |2
i caseNames overshoot maxHevator
case | 0.01 " 2|
EF cases
Hin{egﬁﬂnr
%Um\mizer
< o) () Lo]
[ok J[o][copycal |[Eects |[coss |

Finally, a simulation time of 10 s has to be defined under “integrator”:

198

I=IDesign.Optimization.optimize

e

[

#

@ optimize
&\ setup

& @ Tuner parameters
o E5caseParameters

2% caseCriteria

W caseCriteria[1]

- % caseCriteria[2)]
+- g caseNames

EE cases
-mldemands

L1 integrator

- Eg optimizer

2=
v integrator | Advanced

~Description
Integrator parameters for all cases

- Simulation Interval

Start time li, ¢ Starttime of
simulation

Stop time lim, 5 SlmuI§t|on
stop time

OK | Info Copy Call| Execute Close

The optimization problem defined and to be solved by the Design package optimizer is now:
min(max(overshoot(Kf)/(0.01°), maxElevator(Kf)/(2°)), Kfin [-10;0]
By clicking on the “Execute” button, the optimization is started.

The same setup could be obtained by selecting the first command in the “Commands” menu:

| S ControllerDesign_F14 - Design.0ptimization.Examples.ControllerDesign_F14 - [Documentation]
‘H File Edit Simulation Plot Animation| Commands Window Help
|s@aa | mevsms- »-1 Run1:optimize Kf

'[Packages |_A Run 2: optimize Kf, Kq; 3 criteria

g Design Run 3: optimize Kf, Ki, Kq; 4 criteria
= Calibration Run 4: optimize Ki, Kf, Kq; 4 criteria
wOJExperimentation Run 5: let overshoot increase from 1to 10 %

#JInternal

Lo Run 6: maxElevator as inequality
= Optimization

Run 7: optimize only nominal case

(D optimize
aJExamples Run 8: optimize 2 cases
. [3ControllerDesign_F14 | Run 9: optimize 3 cases
FugUtilities

Add command

S Critaria

After “Execute” is pressed, the optimization is started. The Dymola command log shows the
iterations and the final output.

DESIGN OPTIMIZATION 199

Iteration 21

Tuner parameters

| overshoot
| maxElevator

S,

Summary 23.81173
2.95456
2.95456

| wvalus | abs. diff. | min | max | unit |
———————————————————— B T T Tt T e R

| -1.68516%+000 | 4.314831e+000 | -1.000000=+001 | 0.000000e+000 | |
| criteria | scaled | diff. | unscaled | demand | usac
e T e e e tommmmmm o o o R
| Finalvalue | max 2.95456 | -87.59% | Z2.954561e-002 deg | 1.000000e-002 deg | mini
| FinalvValue | 0.59558 | -66.26% | 1.191153=+000 deg | 2.000000e+000 deg | mini

Maximum scaled critericn at start

Maximum scaled criterion in this iteration
Maxzimum =caled criterien in best iteratien (#20)

Optimization terminated successfully.

{(-1.685174062592052) }
gl |

v

‘ B Modeling I W Sirmulation I

All iterations that are better than all previous ones are shown in the log. The following
information are given in the log for iteration 21:

Tuner “Kf” is active (see last column in the figure above) and has the value “-1.68517".
This is a change of +4.31 with regards to the value of Kf before the optimization started.
The search interval for the optimizer for this tuner is [-10 ... 0] (see min/max columns).

There is only one simulation case defined and therefore no additional information is given
for the cases.

The scaled criteria “overshoot” is currently the largest of the scaled criteria (due to the
“max” in front of the scaled value) and has a scaled value overshoot/demand = 2.95456.
This is a change of -87.59 % with regards to the initial value. The actual value of overshoot
=0.0295456 (= 2.95 % overshoot). This criteria is minimized due to “minimize” and has a
demand value of 0.01 (see column “demand”).

The best values of all tuners are also given in the log as last output. The best value of Kf is

-1.68517406292052. It can be seen, that the overshoot is reduced by 87.59 % and the
control activity by 66.26 % (see column “diff”). However, by tuning only Kf, the overshoot
could not be reduced below the requested demand value of 1 %. Note, the scaled criteria is
below 1, if the demand value is fulfilled. Therefore in the next steps the controller
parameters Ki and Kq will be also optimized.

After the optimization is finalized, the Design.optimize() menu remains open (when using
Execute). Nothing in the setup has changed. In order that the result of the last optimization
run is included in the setup, it is necessary to select the “Select” button of “tunerParameters”,

200

Design.Optimization.optimize 2lx

(> optimize @ Tuner parameters
= setup -Description
D" Model parameters to be optimized
=egcaseParameters
&7 caseCriteria Rows |1 il
::-?caseNames name active |value min max unit
Zcases
1 "KE" - -6 -10 0
mdemands
-wwintegrator
EBoptimizer

Select parameters

OK | Info Copy Call| Execute Close

Component

-0 alpha_c_deg
0g

Kf

-0 Kq

- |

O Ma

- Md

O Mgq

- Tﬁ LI

Reset from file: ¥ value

Cancel

mark “value” and click on “OK”. This will load the values of all tuners from the last
simulation run:

DESIGN OPTIMIZATION 201

Design.0ptimization.optimize

e

B

[

(> optimize
=Y setup
@@ Tuner parameters

g caseParameters
T caseCriteria
g8 caseNames
EE cases
mdemands
-wwintegrator
EBoptimizer

» Tuner parameters

2=

- Description
Model parameters to be optimized

Rows |1 il
name active |value min max unit
1 "Kf" || -1.68517 -10 0
Select parameters
OK | Info Copy Call| Execute Close

Design.Optimization.optimize

Since the optimizer performs a last simulation run with the best tuner values, these tuner
values are the ones from the best iteration of the last optimization.

The setup is changed such that all controller parameters Kf, Ki, Kq are defined as tuners.
Furthermore rise time and settling time are introduced as further criteria. These criteria are
introduced to counteract the effect that the reduction of control activity and overshoot may
lead to very long rise and settling times in the alpha step response.

The controller parameters Kf and Kq are defined with active = true (default value in the
second column of the Tuner parameters table). In turn, we set active = false for Ki. This
means that the value of Ki is not changed by the optimizer. By increasing Kq it should be

possible to reduce the overshoot.

e

e

e

e

(T optimize
=Y setup

7@ Tuner parameters
--ggcaseParameters
= caseCriteria
-8 caseNames
EZ cases
-Mmldemands
tuintegrator
Egoptimizer

» Tuner parameters

~Description
Model parameters to be optimized

Rows |3 il
name active |[value min max unit
"Kf" |l -1.68517406292052 -10 0
"Ki"| false -] -2 -10 0
"Kq" El 0.5 0 10
Select parameters
OK | Info Copy Call| Execute Close

202

In a first step we set active = false for the riseTime and settlingTime criteria (via the second
column of the caseCriteria). Therefore, these criteria are shown in the log output, but are not
utilized in the optimization.

Design.Optimization.optimize ll x
(T optimize T caseCriteria |
& setup -Description
EUCLCT ELEWCETS Criteria definitions for one case
wgg caseParameters
B cascCrieria MUY B
i EcaseNames name active | criteria criterionUsage | unit
Zcases
1 "overshoot” < ~|EZ = "deg"”
-mJdemands — | — 9
Twintegrator 2 | "'maxElevator [~ [~ |2 deg
E5optimizer 3 "riseTime"| false v Jd =] =l "s"|
4 | "settlingTime"| false ~| [~ =] "s"
Select

OK | Info Copy Call| Execute Close

Although the riseTime and the settlingTime criteria are not used in the optimization itself,
we have to provide demand values for them (0.5 and 5).

Design.Optimization.optimize x|
@UDIiI‘ﬂiZE |E| demands |
B U setup Desciiption
[+ & Tuner parameters [case, caseliteria) matrix defining the demand walues used far sealing
[+~ B caseParameters
== . Faows |1 ﬂ Calumns |4 ﬂ
[~ T caseCiiteria
[+ g caseMames overshoot maxElevatar niseTime settlingTime
= case | 0.01 2 0.5 5
- EE cases

— .
- 4, t, Integrator

B cptimizer
Impart Load Save Plat »>» |
ak I Infio | Copy Call | Execute | Cloze |

After the optimization run (same as “Commands / Run 2”), Kq has been increased to
0.725383834580606 and Kf has been increased to -1.33686637964285. As a consequence,
the overshoot is now below the demand value of 1 %. However due to the high value of Kq
the rise time increased.

Finally we update the tuner values again (with the values from the previous optimization
run), set the riseTime and settlingTime criteria active and make the controller parameter Ki
a tuner as well, i.e., set active = true as done in “Commands / Run 3” After the optimization
is finished, all demand values are fulfilled.

DESIGN OPTIMIZATION 203

Multi-criteria experimenting

The Design optimize function provides features for criteria weighting and scaling by
demand values as well as the possibility to use criteria as a value to be minimized or to use
them as constraints.

During an optimization run, the optimization criteria are scaled with their demand values, i.e.
the value delivered to the optimization method is criterion value/demand value. By
changing the demand value of a criterion, a differently weighted optimization task is defined
and therefore normally a different solution is obtained. In the following, the effect of
demand value variation on the multi-criteria controller parameter optimization for the F14
aircraft is shown. Furthermore, the effect of using an optimization criterion as inequality
constraint is demonstrated.

The controller parameters Kf, Ki, Kq are defined as tuners (using the best values of the last
run by “Reset from file”; you may also execute “Commands / Run 4” to achieve this result)
and the final values of overshoot, riseTime, settlingTime and maxElevator as optimization
criteria (c1(Kf,Kq,Ki)..c4(Kf,Ki,Kq)) with their new demand values d; = {0.01, 0.5, 2.5, 3}.
For a first optimization of the controller parameters all criteria are defined as minimum
(default), i.e. the optimization task is to solve the min-max problem:

min(max(c1/d1, c2/d2, ¢3/d3, c4/d4)) over Kf, Ki, Kq

A solution for the controller parameters Kf, Ki, Kq was found
(-4.25146525932043, -4.23395327838336, 1.00358897271209) such that all criteria are
reduced below their demand values. The scaled criteria all have nearly the same value
(within computational accuracy): 0.7829. This result indicates that the solution is a Pareto-
optimal solution, where no criterion can be further minimized without degrading at least one
other criterion (provided this is not a local minimum).

As a first variation, we will change the demand value for the overshoot criterion from 1 % to
10 %. This means that more overshoot in the alpha step response is allowed and we expect
that the other criteria improve. After updating the tuner values by “Reset from file”, we start
the optimization (you can get this result also by executing “Commands / Run 5”).

In the command log output of this optimization run you can see that the overshoot increased
with the effect that all the other criteria could be improved. We obtain again a Pareto-
optimal solution among all criteria as their scaled criterion values are nearly identical: 0.73.
This demonstrates how different compromise solutions can be found by variation of the
demand values.

As a next modification of the optimization task we change the type of the maxElevator
criterion (c4) from minimum to inequality:

204

Design.0ptimization.optimize

2=

optimize
=Y setup
= @ Tuner parameters
g caseParameters
T caseCriteria
g8 caseNames
EE cases
mdemands
-wwintegrator
EBoptimizer

[
e
B
[

% caseCriteria |

- Description
Criteria definitions for one case
Rows |4 il
name active |criteria |criterionUsage unit
1 "overshoot” I [~ | - "deg”
2 “riseTime"] [~ I [~ "s”
3 | "settlingTime” M [| [~ "s"
4 | "'maxElevator” I [~ [~ "deg”
Select minimize Value/demand |
Value <= demand (inequality constraint) -

Value ==Idemand (eqluality constfaint) ute | Close

This means, that this criterion is not minimized any more but taken as inequality constraint.
The new problem to solve is

min(max(c1/d1, c2/d2, c3/d3)), subject to c4/d4 <= 1 over Kf, Ki, Kq

After updating the tuners (“Reset from file”’) and starting the optimization, the result is (this
result can also be obtained with “Commands / Run 6”:

{Kf, Ki, Kq} = {-5.52323684440722, -5.30428537997218, 0.992903698285534}.

The change of the type of the maxElevator criterion from minimum to inequality yields a
new controller parameter set. You can see from the simulation results that due to the new
criterion formulation the elevator is now deflected to the maximum allowed value of 3°
during the step response. This is an increase of 37.18 % in the maximum elevator deflection
compared to the solution of the previous optimization (see the command log output).
However due to the increased maximum elevator deflection other criteria could be
decreased.

Multi-case optimization

In this section, we start a new optimization task in order to extend the controller parameter
synthesis to a multi-case optimization. As all aerodynamic parameters Ma, Mq, Md, Za, Zd
of the F14 aircraft may vary within = 10 % of their nominal value,

{Ma, Md, Mq, Za, Zd} sominat = {-3, -7.5, -0.7, -0.67, -0.2},

known worst-case scenarios are simultaneously considered in addition to the nominal case.
A controller parameter set stabilizing all these cases shall be found.

First, a simulation with the current controller parameters Ki = -2, Kf = -1.72 and Kq = 0.5
for the nominal case is performed.

DESIGN OPTIMIZATION 205

ControllerDesign_F14 - Design.0Optimization.Examples.ControllerDesign_F14 (Encrypted)

File Edit Simulation Plot Animation Commands Window Help

=10l x|

I Wl QSN2 € &[0z |

& vl

WVanables % I Y alues I it I Dezcription I;
[+ CantrollerDesign_F14 1
I ContrallerDesign_F14 2
-[Jalpha_c_deg 1 deg desired angle of ...
-[g 980665 gravity constant
-1k -2
-CIKE IE
-[Kq 05
Sl | E.495
-[IMa -5
-[C1hdd 75
-[Cg 0.7
-[(1Ta 005
{[Ts 01
-0 2101
-[1Za 067
-[1Zd 0.2
W] alpha_deq 0999341 deq angle of attack [...
[l der(alpha_deg) 0.0007 4676 deg's derfangle of atta...
[degs 0.00071 4676 deg's pitch rate [deg/s]
[delta_deg 0715735 deg elevator deflectio...
[overshioot Odeg overshookt of ang...”
- [riseTime 0.554484 5 rize time of angle. .
[settingTime 3E5246 s zettling time of a...
[I mawE levator 1.17048 deg masimurm elevata...
Fcontoller LI
Advanced
p= }{U: VDZ
Conztants Time varying Online
v Qriginal [~ Difference [~ Compare Besults
Search Filker:
Tirne: 10

alpha_deg

oil=R=R R e] R
| [T -lolx

HddDw

%|[za = -0.2;
Kf = -1.72;

4]

gimulateModel { "Design.Optimdzation. Examples. ControllerDesign F14",

=l

stopTime=10, method="das=s1l", resultFile=~
| 3

Modeling | "y* Simulation I
| Btroceng | y

The plot browser shows the corresponding criteria values:

overshoot riseTime settlingTime maxElevator
demand value 0.01 0.5 4 2
current value 0 0.55 3.7 1.2

206

You see that the riseTime criterion is not yet satisfied. Therefore a new optimization task
will be defined (you may use “Commands / Run 7” instead). In this particular step we only

consider the nominal case.

It should be straightforward to define the tuners {Kf, Ki, Kq} and the criteria {overshoot,
riseTime, settlingTime, maxElevator} with the demand values given in the above table.

Further we define the aerodynamics parameters as case parameters.

Design.Optimization.optimize 2=
@oplimize B casePaiameters |
& V setup Desciiption
- @@ Tuner parameters Model parameters defining one case [e.g. operating point]
[+ C
-’ Rows |5 =
(- W, caseCriteria j
[+ FE easeMNames ames) unit
1 “Ma"
EE Cases
2 hid" T
IE' demands
F integratar 3 M
] 4 =] T
%oplimizef 5 D
Select
ak I Infio | Copy Call Execute Cloze
An appropriate name is assigned to the currently considered case.
Design.Optimization.optimize ﬂﬂ
®0plimize == caseMames
B U setup Description
(- 4% Tuner parameters Mames of the different cases
- careParameters
E . Rows |1 ﬁl
(- W, caseCriteria
e = harme active
EE cases 1_' nominal LI
.. [In] demands
—
-, t, integrator
- B optimizer
ok I Infa | Copy Call Execute Claze

We provide the case parameters’ values for the nominal case.

DESIGN OPTIMIZATION

207

Design.Optimization.optimize x|

@UDIiI‘ﬂiZE _EE cases
B U setup Description
- @ Tuner parameters [case, caseParameters] matrix defining the different cases
[+ F caseParameters
Rows |1 = Columres |5 =
[~ T caseCiiteria I j I j
(- B caseNames Ma Md Ha Za Zd
nominal | 5 75 0.7 067 0.2

|E| demands
— .
- 4, t, Integrator

B cptimizer

Irnport Load Save Plot 2> |
akK I Infio | Copy Call Execute | Cloze |

Finally, we set the simulation time (“integrator”) to 10 seconds.
The obtained optimization result satisfies all criteria and gives the following tuner values:
{Kf, Ki, Kq} = {-2.7644705121894, -2.73348743052164, 0.61829473903147}

From a different analysis, it is known, that the obtained controller set does not satisfy the
criteria in the case

{Ma, Md, Mq, Za, Zd} worsovershoot = 1-4.5, -6.75, -0.63, -0.603, -0.18}

This set of aerodynamic parameters will be used to define a case “worstOvershoot” besides
the “nominal” case

In “caseNames” we define the additional case:

[=) Design.Optimization.optimize ﬂﬁ
(T optimize E3 caseNames |
&\ setup -Description
[A
UL ELE LT Names of the different cases
w-ggcaseParameters
T caseCriteria Rows |2 2
e .
E8 ke sl name active
oL 1 "nominal” v
-mldemands = - S ol =
. 'worstOvershoo >
tuintegrator —
Egoptimizer

OK | Info Copy Call| Execute Close

The different values for the parameters defining the new case are given in the
cases [case,caseParameters] matrix:

208

[Design.Optimization.optimize 2%
(> optimize £ cases |
=Y setup
= @ Tuner parameters
=g caseParameters

. N ry ry
&7 caseCriteria Rows |2 EI Columns |5 EI

=g caseNames Ma Md Mq Za Zd

nominal 5 75 o7 o67 o2

Wldemands
“tintegrator worstOvershoot 4.5 -6.75 -0.63 -0.603 -0.18

EBoptimizer

- Description
[case, caseParameters] matrix defining the different cases

Importl Load| Savel Plot >>>
OK | Info Copy Call Execute| Close |

We have to provide demand values for the new case.

Design.Optimization.optimize llll
@oplimize lEl demands |
B- V sstup Description
[+ % Tuner parameters [caze, caseCriteria] matrix defining the demand values uzed for scaling
[~ 5 caseParameters
EE : Fiows |2 ﬂ Columns |4 ﬂ
T caseliiteria
g caseMames avershoot rizeTime settlingTime marElevator
rarninal 0.01 05 4 2
- EE cases
worstOvershoot 0.0 08 4 2
® M demands
— .
- 4, + Inteqrator

=] oplimizer

|mport Load Save Flot >3 |
aK I Inf | Copy Call | Execute | Cloze |

An optimization will be performed now (i.e., after having updated the tuner values using
“Reset from file”) for this multi-case scenario. The objective is to find controller parameter
values for Ki, Kf, Kq such that all criteria are satisfied simultaneously for both cases
"nominal" and "worstOvershoot" (you may execute this optimization task by “Commands /
Run 8”.

You can see that for both cases a controller parameter set could be determined that satisfies
all criteria:

{Kf, Ki, Kq} = {-2.95319096183149, -2.71504063778775, 0.700519275733324}

Again, it can be shown, that a controller using these parameters is not robust against the
uncertainties in the aecrodynamic parameters. The settling time criterion is not satisfied for
the aerodynamic parameters

{Ma, Md, Mq, Za, Zd} yorssettingTime = {-3.5, -6.75, -0.63, -0.737, -0.18}

DESIGN OPTIMIZATION 209

This set enters the setup as new case “worstSettlingTime”. Another optimization step will be
performed (we do not forget to update the tuner values and to provide demand values for the
new case) to determine controller parameter values to simultaneously satisfy all criteria for
the three cases “nominal”, “worstOvershoot”, “worstSettlingTime”(you may execute this
optimization task by “Commands / Run 9”). The optimizer is able to find a controller

parameter set that satisfies all demands in all three operating points:
{Kf, Ki, Kq} = {-3.15272731479831, -3.05878111172574, 0.764835115980916}

By further analysis, it could be shown, that this controller parameter set stabilizes the
aircraft robustly to the aerodynamics parameters.

Although the F14 example is very simple, many essential ingredients have been shown.
They can all be applied also to much more complicated cases.

210

Model management

Model Management

The model management package includes version management, automatic documentation of
model dependencies and encryption of models.

Use of the model management package requires the Model Management option.

Version management

The context of version management

In developing model components for a complex system such as a vehicle, many different
kinds of competence are needed. Experts in engines, transmissions and chassis etc. are
needed to develop a drivetrain. Because several people are involved in the process, it
becomes essential to break up or decompose the overall problem into modular units during
development.

As more people are involved in the process, the development is geographically and
chronologically distributed because it is natural to have centers with specific core-
competencies. This implies that the modular units developed must be seamlessly integrated
to solve the overall problem, and the partitioning should be able to reflect the organizational
structure of the model development teams.

In order to increase quality and reduce development time, tools should be made available to

213

e Provide a structure for organizing, storing and retrieving information (models, simulation
results, documentation, experiment data).

e Support the exchange of information and simplify reuse of models throughout the
organization.

e Ensure that correct information is available to each user (versions of libraries,
corresponding experiments).

A version control system provides means to track changes to a set of files. A “commit”
operation associates a developer and documentation with each change to the common
storage of files. The Modelica text of two versions can be compared, and it is possible to
back up to any previous version.

The underlying version control system must be able to support multiple concurrent
developers working on the same set of models. Extensive locking of files is undesirable in a
collaborative environment, and more recent tools also support concurrent development of
closely related parts (with appropriate safety nets). A single physical person may have
multiple roles in the development or use of the library; one role as a developer for new
features of the library, and one role fixing bugs in a release version of the library.

Traceability is essential for maintaining quality over time. Tool enforcement to document
modifications before they become publicly available gives the opportunity to review
changes and improves quality. The development history (documentation of changes) may
also be needed for tracing model incompatibilities, for example.

Model testing should be integrated with model development, which implies that the version
control system must be able to handle test scripts, support utilities and binary test data.
Regression testing, where models are simulated and compared with known good simulation
results, is very powerful in detecting involuntary changes to model libraries. A failed
regression test may cause either a change of a model, or the revision of the test itself.

Multiple libraries are often used together. In this case, version compatibility across libraries
becomes essential. It must be possible to “tag” releases of multiple libraries to indicate
compatibility at the project level.

Dymola supports storing, retrieving, etc. of models in version control systems such as CVS
(Concurrent Versions System) or SVN (subversion). We have deliberately chosen to build
on existing version control systems, which offers greater flexibility and better integration
than a proprietary system. Because of the textual representation of models in the Modelica
language, existing text-based tools can be used, for example, to compare versions. To
browse changes in large systems, support in the graphical environment of Dymola would be
needed.

The use of public libraries has increased in industry over several years. More recent is “open
source development”, which can be described as the loosely organized development
(typically of software) by several geographically separated parties. Public websites, such as
SourceForge, support Open Source development with web-based tools and CVS/SVN. The
Modelica Standard Library is maintained as a project on a server.

214

Scope of implementation

This is a description of minimal support for version management in Dymola. The strategy is
to provide a relatively thin layer on top of an existing version management system, such as,
CVS (Concurrent Versions System) or SVN (subversion).

The added value for the user, compared to using existing graphical user interfaces e.g.
WinCVS or TortoiseSVN, is:

e Commands are integrated in the Dymola environment. No need to swap between
different applications. Some information is easily accessible in Dymola, e.g. version
number and date.

e Some steps have been automated. For example, Dymola knows the filename of the
current class, knows if there are files which have been modified, etc.

o Files are automatically reloaded into Dymola after updates from the repository.

However, there is no need to provide a comprehensive version management environment in
Dymola. More complex tasks are better performed in specialized tool such as WinCVS,
TortoiseCVS, TortoiseSVN or RapidSVN.

Supported features

Dymola provides a graphical user interface to the most basic CVS and SVN commands,
where the principal automatic step is to provide the correct file name in which the model the
user is located.

The primary commands (in CVS terminology) are:

Update

Updates your local copy of the file with changes from the repository. If your file has been
changed since it was last updated, your changes are merged with the changes made to the
repository. After a successful update the file is reloaded into Dymola.

If conflicts arise during the merge, this is noted in the message window, and the file is not
reloaded into Dymola.

See Query Update for an explanation of the status code displayed in the message window.
Commit...

Updates the repository with changes you have made in your local file. Your file is first
checked to make sure that you have an up-to-date copy. You are then asked to enter a
description of the changes, which is later available through the Log command.

Add Model

Makes a new model’s file known to the underlying version management system. The user
must then perform a Commit on the model.

215

Add File...

Makes an arbitrary file known to the version management system. The user must select the
file using a file browser.

Diff
Displays the textual differences between your local file and the corresponding version in the

repository.

Query Update

Displays which files in the model's directory are

e Locally modified compared to the corresponding version in the repository (marked by
“M” before the filename).

e Changed in the repository compared to the version that was checked out (“U” or “P”).

e Caused a conflict during an Update operation, or which could potentially create a conflict
because it is both locally modified and changed in the repository (“C”).

e Added but not yet commited (“A”).
e Unknown to the version management system (“?”).

Local files are not updated. The repository is not changed.

Status

Displays version status of the file. The information includes:
o If the file is up-to-date, needs an Update, or has been locally changed.
e Revision of your local file and the repository file.

o A list of all symbolic tags and which revisions they refer to.

Log

Displays log messages which were entered every time the file was committed, and a list of
all symbolic tags and which revisions they refer to

Revert

Deletes your local file and retrieves the latest version from the repository. All changes to
your local file are lost.

All version management systems operate on files. An environment which would allow
version management of individual models even when several models are stored in the same
file could be implemented on top of external tools, but would be quite complex. However,
Dymola can easily map from model to the corresponding filename, and also knows when a

216

model is part of a larger package comprising several files (in which case updates probably
should be made on all files).

Also note that CVS can update special “keywords” in the Modelica text, which can be used
to automatically insert information in the model documentation. They include version
number, date of last change, and a log describing all changes. An example of this is given
below.

Conflict handling after update

If several users have modified the file, the “update” command of CVS or SVN will attempt
to merge the changes. If they have modified the same lines of code, CVS will detect a
conflict. After a conflict the original modified file is kept as backup, and the merged file
contains both sets of changes marked by special indicators inserted into the text. It is then up
to the user to resolve the conflicts.

An important issue here is that Dymola cannot use the file until conflicts have been resolved.
Initially we do nothing, i.e., require that the user edits the Modelica file with some external
text editor to delete conflicting lines and their indicators. At some future point in time
Dymola could be extended to parse Modelica text with CVS conflict indicators, and the
resolution could be handled from within Dymola (which of course has better support for
analyzing the conflicts). An intermediate step is to rename the file with conflicts and restore
the backup; this will at least maintain consistency between the Dymola environment
internally and the corresponding file externally.

It should be noted that merge conflicts arise from a people management problem, and are
rare in practice. Normally people working on a project do not edit the same code.

Version management of non-model files

The discussion of version management is naturally focused on Modelica code, but the
facilities also handle parameter sets, experiments and trajectories in large projects.

Parameter sets and experiments can be represented by Modelica models. In this case the
experiment extends from the top-level model and provides experiment-specific parameters
through modifiers of the extends clause. An alternative is to set up the experiment with a
Modelica script file (extension .mos). Trajectories are represented by binary files
(extension .mat).

Files which are not Modelica text can be stored in hierarchical Modelica packages. These
files are added to the repository using the Add File... command. Operations performed on
the package will then also operate on the contained .mos and .mat files. Operations

CEINNT3

supported include “update”, “commit” and “status”.

Selecting version management system

Dymola supports two version control systems, CVS and SVN, and generates the appropriate
external commands to perform operations on the version control system. Which system is
used is set in Edit/Options/Version.

217

Setting version
management system.

Location of the CVS
command.

Appearance | i | Save geftings

Modelica version
22 w

Force upgrade of models to thiz version

Werzsion managerment spshenm
(#) Concurent Yersian System [CY5)
() Subwersion [SYN)

I 1]] [Cancel

The setting for version management system is stored when you do a “Save” in
Edit/Options/Save settings.

Version management using CVS

Version management support in Dymola assumes that there exists a functional CVS
environment. In its simplest form there exists a CVS repository on a local disk. More
advanced installations maintain a CVS server on a separate UNIX system; one such setup is
the use of the SourceForge server to maintain the Modelica standard library. Two examples
are given below.

It is worth pointing out that Dymola and the underlying CVS system supports development
of libraries maintained at several different servers concurrently. For example, the Modelica
standard library may be maintained at SourceForge, other libraries proprietary to the
company, and still others by the user on a local disk. In this fashion version management
also facilitates effective distribution of updates as they become available from the vendor.

Note: in several places the user is asked to execute the CVS command. The file cvs.exe is
located in the Dymola distribution, typically \dymola\bin. For conciseness it is written as cvs
in these examples.

Local CVS repository

To set up a local CVS repository, first choose the machine and disk on which you want to
store the revision history of the source files. CPU and memory requirements are modest, so
most machines should be adequate.

To create a repository with a set of configuration files, run the “cvs init” DOS command to
set up an empty repository in the designated directory. For example,

mkdir \cvs

218

cvs -d \cvs iInit

These steps complete the initialization of the CVS repository. The “cvs init” command is
careful to never overwrite any existing files in the repository, so no harm is done if you run
cvs init on an already set-up repository.

Note that is you use a Windows drive letter, you must write a slightly longer repository
specification because the “cvs” command interprets the colon after the drive letter:

cvs -d ":local:c:\cvs" init

The CVS repository is initially empty. It is necessary to create one or more directories
which act as top-level directories for further development. For example, we may create a
“models” diectory:

mkdir \cvs\models

To use a CVS repository it is necessary to initially perform a “checkout” operations:

cvs -d \cvs checkout models

This command creates a “models” sub-directory with all models currently stored in the
corresponding top-level directory in the CVS repository. It also creates extra directories
called “CVS” at each level, which are used to maintain CVS status information. The files
inside the “CVS” directories should never be manipulated by hand.

Access to servers via CVS

Projects maintained at SourceForge (http://www.sourceforge.net) or other servers can be
accessed via CVS. To access the Modelica area via CVS, you set up your CVSROOT when
the files are initially checked out, and do a “cvs login” with an empty password. After that
the usual CVS commands work as expected.

If you work against a single CVS repository it may be convenient to set the CVSROOT
environment variable to the value below, as an alternative to using the -d command line
switch:

:pserver :anonymous@cvs.modelica.sourceforge.net:/cvsroot/modeli
ca

To use it you must first login and then check out using these DOS commands:
cvs login // empty password

cvs checkout Modelica // check out standard library

This will checkout the entire Modelica standard library in the current directory.

An example of file management using CVS

In this example we will demonstrate the basic version management operations provided by
Dymola. It is divided into several different steps to setup a local CVS repository, to create a
new model, and to make changes to an existing model.

219

Setting up the CVS repository

A local CVS repository is set up, and then a new top-level directory called “models” is
created. Finally the new top-level directory needs to be checked out in the current working
directory. Execute these DOS commands:

mkdir \cvs

cvs -d \cvs init

mkdir \cvs\models

cvs -d \cvs checkout models

A new (empty) directory has now been created in our working directory.

Creating a new model

We can start by creating a model in Dymola and saving it in the “models” directory. For our
example we will use the simple model:

model Decay

Real x(start=2);
equation

der(x) = -x;
end Decay;

Initially the model is unknown to the version management system. For example, a
Version/Status command returns this information in the message window:

C:\util\dymola\bin\cvs.exe status -v Decay.mo
(in directory C:/dev/Proj/DymolaQt/models)
cvs.exe status: use “cvs.exe add" to create an entry for

Decay -mo
File: Decay.mo Status: Unknown
Working revision: No entry for Decay.mo

Repository revision: No revision control file
Command finished.

Next we perform the Version/Add Model command to make the model’s file known to the
version management system.

C:\utiI\dymola\bin\cvs.exe add Decay.mo

(in directory C:/dev/Proj/DymolaQt/models)

cvs.exe add: scheduling file “Decay.mo" for addition

cvs.exe add: use "cvs.exe commit® to add this file permanently
Command Ffinished.

The information from Version/Status is now different, but there is no file in the repository
yet (not until we commit the file).

C:\utiI\dymola\bin\cvs.exe status -v Decay.mo
(in directory C:/dev/Proj/DymolaQt/models)

File: Decay.mo Status: Locally Added

220

Working revision: New file!
Repository revision: No revision control file
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
Command Ffinished.

When we perform Version/Commit..., the user is asked to enter a log message describing
what changes are committed. The lines beginning with CVS are generated to help us
remember the nature of the commit.

This is the first version of our test example.

CVS:. ——
CVS: Enter Log. Lines beginning with "CVS:" are removed
automatically

CvVS:

CVS: Added Files:

CVS: Decay.mo

CVS: ——— -

The message after the commit operation has finished looks like this:

C:\utiI\dymola\bin\cvs.exe commit Decay.mo
(in directory C:/dev/Proj/DymolaQt/models)
RCS file: \cvs/models/Decay.mo,Vv

Checking in Decay.mo;

\cvs/models/Decay.mo,v <-- Decay.mo
initial revision: 1.1
done

Command finished.

The output from Version/Status now contains more information, in particular the version
number of the file and the date it was last changed in the repository.

C:\util\dymola\bin\cvs.exe status -v Decay.mo
(in directory C:/dev/Proj/DymolaQt/models)

File: Decay.mo Status: Up-to-date
Working revision: 1.1 Fri Oct 04 09:34:02 2005
Repository revision: 1.1 \cvs/models/Decay.mo,V
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
No Tags Exist
Command Ffinished.

It is also possible to view the change log with Version/Log. The change log contains all
messages entered during commit operations.

C:\utiI\dymola\bin\cvs.exe log Decay.mo
(in directory C:/dev/Proj/DymolaQt/models)
RCS file: \cvs/models/Decay.mo,Vv

Working file: Decay.mo

221

head: 1.1

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 1; selected revisions: 1
description:

revision 1.1

date: 2005/10/04 09:34:02; author: Dag; state: Exp;
This is the first version of our test example.

Command finished.

The output from both Status and Log contain information specific to the underlying CVS
system, which is beyond the scope of this report. For non-expert users it would be beneficial
to filter the raw output.

Changing an existing model

Starting with the model created above, we now modify it by adding a time constant Ti. The
revised Modelica text looks like this:

model Decay
Real x(start=2);
parameter Real Ti=1;
equation
der(x) = -x/Ti;
end Decay;

The Version/Diff command will display the differences between the model stored in the
repository and the current model. Changed lines are indicated by “!”, added lines by “+” and
any removed lines by “-” (this is the so-called “context diff” format).

C:\utiI\dymola\bin\cvs.exe diff -c Decay.mo
(in directory C:/dev/Proj/DymolaQt/models)
Index: Decay.mo

RCS file: \cvs/models/Decay.mo,Vv
retrieving revision 1.1

diff -c -w -r1.1 Decay.mo

*** Decay.mo 2005/10/04 09:34:02 1.1
-—- Decay.mo 2005/10/04 09:43:12

*x*k 1’5 *x*k*x

model Decay
Real x(start=2);
equation
! der(x) = -x;
end Decay;
-—- 1,6 ———-
model Decay

222

Real x(start=2);
+ parameter Real Ti=1;
equation
1 der(x) = -x/Ti;
end Decay;
Command Ffinished.

The Version/Query Update command is used to quickly list which files have been locally
modified (indicated by “M”) or need to be updated from the repository (“U”).

C:\util\dymola\bin\cvs.exe -gn update

(in directory C:/dev/Proj/DymolaQt/models)
M Decay.-mo

Command finished.

The Version/Query Update command does not operate only on the file of the model. Instead
it operates on the entire directory and all sub-directories; this makes it particularly useful to
concisely review the status of all files in a complex model hierarchy.

The model is then committed to the repository with Version/Commit, as shown above. If we
review the log with Version/Log, we see that the new revision comment is also listed. The
listing also shows the number of changed Modelica text lines.

C:\util\dymola\bin\cvs.exe log Decay.mo

(in directory C:/dev/Proj/DymolaQt/models)

RCS file: \cvs/models/Decay.mo,v

Working file: Decay-mo

head: 1.2

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 2; selected revisions: 2
description:

revision 1.2

date: 2005/10/04 09:44:57; author: Dag; state: Exp; lines:
+2 -1

Added time constant Ti.

revision 1.1

date: 2005/10/04 09:34:02; author: Dag; state: Exp;
This is the first version of our test example.

Command finished.

This concludes the demonstration of how models are edited in co-operation with the version
management facilities in Dymola.

223

Use of revision information

The underlying CVS system supports expansion of particular keywords, for example to
automatically document the revision or commit date of the model. We could for example
enter this text in the revision part of the documentation layer of our model:

Model revision: $Revision$
Last changed: $Date$
Change log:

Log

The keywords indicated by $ will be expanded at the next commit operation. The result is
shown in the following example of HTML documentation:

224

<N Decay - Microsoft Internet Explorer E|@|Pg|
¥

File Edit ‘“iew Favorites Tools Help f,

. 0 »
QBack ~ 3 - [¥] [2] (o) Search w7 Favorites 48 -l B -
Address |@ C:\Documents and SetkingsiDagiky DocumentsiDecay ., hkml A |
Decay

Information

Model revision: §Revision: 1.3 §
Last changed: $Date: Z005/10/04 09:51:52 §

Change log:

jLog: Decay.wo,v §
Reviszion 1.3 Z2005/10/04 09:51:52 Dag
Added change log to documentation.

Parameters

Type Name Default Description
Real Ti 1

Modelica definition

model Decay
Real x(start=2);
parameter Real Ti=1:
equation
der(®)] = -x/Ti;
end Decay:

HTMI-documeniation generated by Dwmola Thy Dec 15 13:36:00 2005

@'] Dang J Iy Carnputer

Version management using SVN

Version management support in Dymola assumes that there exists a functional SVN
(subversion) environment. In its simplest form there exists a SVN repository on a local disk.
More advanced installations maintain a SVN server on a separate UNIX system.

It is worth pointing out that Dymola and the underlying SVN system supports development
of libraries maintained at several different servers concurrently. For example, the Modelica
standard library may be maintained at svn.modelica.org, other libraries proprietary to the

225

SVN editor setup.

Location of the SVN
command.

company, and still others by the user on a local disk. In this fashion version management
also facilitates effective distribution of updates as they become available from the vendor.

Some SVN operations require input from the user, for example a log message when a file is
committed. To enable this feature the user must set either of the environment variables
SVN_SETUP, EDITOR or VISUAL to the name of a text editor. On Windows “notepad”
will be sufficient for most uses.

Note: in several places the user is asked to execute SVN commands. The files svn.exe and
svnadmin.exe should be available from the command line if you have performed the default
installation of SVN (see “References” below).

Local SVN repository

To set up a local SVN repository, first choose the machine and disk on which you want to
store the revision history of the source files. CPU and memory requirements are modest, so
most machines should be adequate.

To create a repository with a set of configuration files, run the “svnadmin create” DOS
command to set up an empty repository in the designated directory. For example,

svnadmin create \svn

The SVn documentation suggests that you populate the repository with three directories
called branches”, “tags” and “trunks”. The easiest way to do that is to create these
directories locally and then import them:

mkdir models

cd models

mkdir branches

mkdir tags

mkdir trunk

cd ..

svn import models file:///svn/models -m "Initial import"”

SVN will report that it has imported the directories as revision 1. It is worth noting that SVN
manages directories as well as files, whereas CVS only manages files directly and implicitly
creates directories as needed.

2

These steps complete the initialization of the SVN repository. Remove the local “models
directory to start over.

rmdir /S models

To use a SVN repository it is necessary to initially perform a “checkout” operation to create
a local copy with files that can be modified

svn checkout file:///svn/models/trunk models

This command creates a “models” sub-directory with all models currently stored in the
corresponding top-level directory in the SVN repository. It also creates extra directories
called “.svn” at each level, which are used to maintain SVN status information. The files
inside the “.svn” directories should never be manipulated by hand.

226

An example of file management using SVN

In this example we will demonstrate the basic version management operations provided by
Dymola. The example shows the first steps from the CVS-based example above.

Setup the SVN repository with initial directories, and check it out. This is described above.

Creating a new model
We can start by creating a model in Dymola and saving it in the “models” directory. For our
example we will use the simple model:

model Decay

Real x(start=2);
equation

der(x) = -x;
end Decay;

Initially the model is unknown to the version management system. For example, a
Version/Status command returns this information:

svn.exe status Decay.mo
(in directory C:/Dag/models)

? Decay.mo

Command finished.

Next we perform the Version/Add Model command to make the model’s file known to the
version management system.

svn.exe add Decay.mo
(in directory C:/Dag/models)

A Decay.mo

Command finished.

We can now perform a Version/Query Update command to get some more information.

svn.exe status --verbose --show-updates
(in directory C:/Dag/models)

A 0 ? ? Decay.mo
1 1 Dag
Status against revision: 1

Command finished.

When we perform Version/Commit..., the user is asked to enter a log message describing
what changes are committed. The lines at the end are generated by SVN to help us
remember which file is committed.

227

This is the first version of our example.
--This line, and those below, will be ignored--

A Decay .mo

The message after the commit operation has finished looks like this:

svn.exe commit Decay.mo
(in directory C:/Dag/models)

Adding Decay.-mo
Transmitting file data .
Committed revision 2.

Command finished.

It is also possible to view the change log with Version/Log. The change log contains all
messages entered during commit operations.

svn.exe log Decay.mo
(in directory C:/Dag/models)

r2 | Dag | 2005-12-15 11:59:22 (Thu, 15 Dec 2005) | 2 lines
This is the first version of our example.

Command finished.

The output from both Status and Log contain information specific to the underlying SVN
system, which is beyond the scope of this report. For non-expert users it would be beneficial
to filter the raw output.

Changing an existing model

Changing the model follows the same pattern as for the CVS-based example above. The
main difference is that SVN log message are different from those produced by CVS.

References

The primary reference to the CVS version management system is
e Per Cederqvist et al. (1993): “Version Management with CVS”.

CVS binaries for several platforms and documentation (including Cederqvist et al.) are
available for downloading from the official CVS homepage:

http://www.cvshome.org/

228

The primary source on Subversion is the homepage. The SVN command line tools used by
Dymola are available here.

http://subversion._tigris.org/

Graphical user interfaces to SVN are available for downloading. Two of the more popular
are TortoiseSVN (an extension to Windows Explorer)

http://tortoisesvn._tigris.org/

and RapidSVN
http://rapidsvn._tigris.org/

which is a free-standing application.

Model dependencies

Dymola can export documentation of models and packages in HTML format. The HTML
documentation contains information extracted from Modelica classes. For example, model
parameters and functions inputs and outputs are tabulated for easy reading without any need
to understand the Modelica text.

Dymola can also make tables of cross-references in HTML. Such a table clearly shows
dependencies to other packages, and in some cases incorrect references can be found. The
following is an example from the design calibration package:

These classes have been referenced in this package.

Plot3D

Class Referenced From

sweepTwoParameters

Design.Internal.Records.MatCsvFileName dataPreprocessing

Design.Internal.Records.MatCsvFileNameOut |dataPreprocessing

Design.Internal.Records.ModelCalibrationSetup

calibrate, checkCalibrationSensitivity, perturbParameters,

sweepParameter, sweepTwoParameters

Design.Internal.Records.PerturbationParameter |perturbParameters

Design.Internal.Records.PreprocessingSignal dataPreprocessing
Modelica.Utilities.Streams dataPreprocessing

Modelica.Utilities.Streams.print checkCalibrationSensitivity, sweepTwoParameters

Modelica.Utilities.Strings

checkCalibrationSensitivity, perturbParameters,

sweepTwoParameters

Modelica LinearSystems dataPreprocessing

229

Modelica_LinearSystems.StateSpace dataPreprocessing

Modelica_LinearSystems.TransferFunction dataPreprocessing
Modelica_LinearSystems.ZerosAndPoles dataPreprocessing
Modelica_LinearSystems.Types dataPreprocessing

calibrate, checkCalibrationSensitivity, perturbParameters,
sweepParameter, sweepTwoParameters

extends Modelica.lcons.Function

The left column shows all classes that have been referenced, for example in import
statements or as the type of a component; extends clauses are specially marked. The right
column show the classs in this package which contain some kind of reference. To see what
the reference is, click on the link and view the Modelica text.

Cross-reference options

The generation of cross-references is controlled by options in File/Export/Setup HTML.

Per file

Generate cross-references to classes in HTML documentation in each HTML-file. This is
typically a subpackage in a larger library.

Top level

Generate cross-references to classes in HTML documentation for top-level package.
Because this often is quite large, the cross-references are stored in a separate file which is
liked from the top-level HTML file (near the end).

Full name

Generate HTML cross-references to classes using full name (the default). When checking
consistency of referencing to classes it may be useful to disable this option, because
inconsistent naming will show up as multiple cross-reference entries.

Encryption in Dymola

Introduction

There are many closed simulation packages on the market where you are not able to see the
details of the models. Modeling is an art in the sense of describing the relevant aspects of

230

the object under observation. It is thus very important to be able to see what assumptions
and approximation the author of a model made.

Dymola is open to view all and possibly modify the details of models by showing graphical
representations and, if all details are wanted, the Modelica code itself. However, Dymola
also supports concealment of model details, if, for example, a supplier wants to protect
proprietary information when shipping models.

A classical way of protecting software is to distribute only executable programs or object
code and no source code. This approach is not useful for Modelica models. To achieve
robust and efficient simulation, it is important that Dymola can make a global analysis and
manipulation of all equations. It is thus highly desirable to give Dymola access to the
equations in their original form. Encryption of the textual Modelica representation of the
model supports concealment of internal parts such as the equations, while still allowing
Dymola internally to access the equations as if the model was not encrypted.

There are also other aspects of protecting models and model libraries. Prevention of
unauthorized modification of models, but still having unrestricted viewing and use is
supported by including checksums. Another aspect of library protection is to ensure
authorized use. In this case, any use of the library is controlled by options in a license file.

Encryption requires the “Model Management™ option in Dymola.

Visible and concealed classes

The basic idea of the protection of models is to hide some information while making it
possible to use the model components.

A protected library typically consists of parts that are open, and other parts that are protected.
Protected parts may require different degree of information hiding, e.g.:

e The model is regarded as a “black box”. The icon, its connectors and parameters as well
as documentation are available to the user to allow use of the model as a component, but
model structure and equations are concealed.

e The model is completely concealed from external use.

Dymola supports concealment by encrypting models or libraries and the use of protected
code sections, and special annotations to allow more information to be revealed. The special
annotations are grouped in “Protection” group (similar to e.g. “Diagram”).

There are several kinds of classes in an encrypted library starting from the most open:

e Example classes that are completely open, such that a user can duplicate it and use it as a
basis for their own work. They can still refer to concealed classes.

e C(Classes that that can be viewed completely (including the entire Modelica text), but
cannot be copied.

e Classes where the diagram is visible (but not the text).

o C(Classes where only the interface is visible. [This is the normal case].

231

e Concealed classes are completely hidden for the users, who shall not be aware of the
existence of such components at all. They are not shown in the package browser and they
cannot be inspected.

A class or a component is defined as concealed if one of these conditions is fulfilled:
e [tis declared in the protected section of an encrypted class.

o [ts lexically enclosing scope is concealed.

o [t has the Protection-annotation: hideFromBrowser=true.

Dymola supports encryption on file basis, which means that all parts of an encrypted
package must be stored in one file. Storing an encrypted package in several files or in
subdirectories would reveal structural information. Instead it is possible to reveal the
contents of encrypted packages.

Developing encrypted libraries

To allow visible components to be used in the normal way to compose models, set
parameters and initial values, the developer of such components must make a careful design.
The public part must provide all necessary parameters, necessary control of initialization
and variables to inspect and plot. Nested modifiers cannot be used to modify concealed
parameters.

Instead new parameters have to be declared and propagated down the hierarchy. Parameters
for initial conditions need to be introduced and propagated to start values or used in “initial
sections”.

The procedure for developing an encrypted library is:

e The developer maintains an unencrypted library, which is easy to modify and easy to
maintain in a version control system. All parts which should be concealed in the finished
library must be declared as protected.

e When the unencrypted library has been finished for release double-click on the package
to show it in Dymola

o If developing a licensed library add the following to the Modelica text in the Modelica
text window: annotation(Dymola(checkSum="", Library="MyLib"));

o Select ‘File/Export/Encrypted model” which produces the encrypted file myPackage.moe.

e The encrypted file, i.e., the .moe file, is distributed. The original .mo files for the
encrypted parts are never distributed outside of the development group.

It is worth pointing out that external decrypting of a .moe file is not supported by Dymola,
but all development work must be performed in the original unencrypted .mo file. In
Dymola all encrypted files are by definition read-only.

232

Using encrypted components

Dymola must not reveal any concealed information when encrypted components are used to
compose a model and as well as at simulation (unless the library developers has decided
otherwise). It means that some commands or operations are disabled or have modified
effects or results. Also some diagnostics and error messages must be less informative.

Let us first discuss the use of encrypted components in Modeling mode.

File menu

An important and basic restriction is that encrypted components are read-only and cannot be
modified. The commands Save, Save All, Save As, and Save Total are not available for
encrypted components. The Duplicate command is only available if duplication is explicitly
enabled.

The commands Print, Export/Image and Export/Animation are not changed in the meaning
that they output what is visible on the screen.

The command Open reads encrypted files in the usual way, when the file type “Encrypted
Modelica files (*.moe)” is selected. This file-type is visible for all users — not only the ones
who have enabled encryption of models.

Package and component browsers

Concealed classes are never shown in the package browser. The component browser does
not show components or extends of a concealed class.

Editor (graphics and text)

Encrypted models are read-only and concealed models are never visible in the editor.
Dymola implements the following restrictions on what is shown in the graphical and textual
layers of the editor.

e The icon layer is empty for concealed classes. Also, it does not show protected
connectors (regardless of encryption). Note that these rules for the icon layer also apply
to icons as they are shown in the diagram layer of some other class.

e The diagram layer is as default empty for encrypted classes (not even public ones).
However, models enclosed in a package called “Examples” or “Tutorial” are shown as
default.

e Modelica text (declarations and equations) is as default empty if the class is encrypted.
e The documentation layer is empty for concealed classes, but is otherwise shown.

The window title says “Encrypted” instead of “Read-Only” for all encrypted classes.

233

Simulation mode

The aim of translating a model is to perform consistency checks and analyze and manipulate
the equations to generate efficient code for simulation. This procedure is not affected by the
fact that components are encrypted or concealed with the following natural modifications:

e Diagnostics and error messages during translation and simulation do as default not reveal
concealed information. Warnings and error messages are issued as for non-encrypted
models, but they may be less informative. An extreme is “Error in ConcealedEquation”.

e The generated simulation code as default prohibits storing, plotting or other access to
simulation results for concealed variables by the use of their names.

Examples

Encrypted transfer function

To illustrate the basics of using and encrypted model component and how encryption
changes error messages, let us develop a simple encrypted model and use it in some simple
contexts.

The model Modelica.Blocks.Continuous.TransferFunction defines the transfer function
between a scalar input, u, and a scalar output, y. Transfer functions may be realized in
different ways. Assume that we have invented a new good way to realize transfer functions
and that we have developed a new model MyTransferFunction that exploits our ideas. We
have also decided to protect our intellectual property by encrypting the model
MyTransferFunction before making it available to others.

The model MyTransferFunction may look like

block MyTransferFunction "Linear transfer function"

extends Modelica.Blocks. Interfaces.SI1SO;

parameter Real b[:]={1} "Numerator coefficients.";

parameter Real a[:]={1,1} "Denominator coefficients.";
protected

Real x[size(a, 1) - 1] "State";

parameter Integer na=size(a, 1);

parameter Integer nb=size(b, 1);

parameter Integer nx=size(a, 1) - 1;

Real xldot;

Real xn;
equation

[der(x); xn] = [x1dot; Xx];

[u] = transpose([a])*[xldot; Xx];

[yl = transpose([zeros(na - nb, 1); b])*[xldot; x];
end MyTransferFunction;

This is very similar to the model in the Modelica Standard Library. However, there is one
very important difference. The model in the Modelica Standard Library, declares the state x
in the public sections as

output Real X[size(a, 1) - 1] "State";

234

If it is possible to store the time trajectories of X, it is possible to find out how we realize the
transfer function by simulating different transfer functions. In our MyTransferFunction the
state is protected, which to prevents users to store, plot or otherwise inspect the simulation
results for the state.

Let us test the model by connecting the input to the source to the sine signal generator of the
type Modelica.Block.Sources.Sine.

Sinel TF

[[

fregHz={1}

Such a model is built in the usual way by dragging and dropping components and
connecting them together. The encrypted model MyTransferFunction is available in the
package browser for dragging but it cannot be displayed or inspected in the editor. The
connectors are public and thus available for connection. Selecting the component and
clicking the right mouse button pops the context menu in the usual way and selecting the
alternative Parameter displays

B TF in TestNonProperTransferFunction EHE

|| AddModiiers |
— Component
Mame ITF

Conment I

— hodel
Fath MuT ranzferFunction

Comment Linear trangfer function

— Parameters
b Mumerator coefficients of transfer function.
a Denominatar coefficients of transfer function.

ak Cancel

and it is possible to enter values for the coefficient parameters.

The result of a simulation is shown below Please; note that the state x components are not
available in the plot selector.

235

B Test1 - Examples Test1 - [Plot [1*]] [_ [O] x|

[l Eile Edit “ersion Simulation Plot Animation Window Help =
IEEELEI = BN iil= == E I R TR N
Warishles / IVaIues IUnit 12 TF.u TF.y
EiTest 1
EITF]
ElinPort
“n 0.8+
[signal[1]
outPort 4
“n
i 0.4
il : i
-Ih[1] 1
1] 1 0+
-[4[2] 1
#Sinel]
-0.4
0.8
< | |
T T T T T T T T T
Advanced | 0 0.2 0.4 06 08 1

The sine generator may produce multiple output signals, while the transfer function assumes
a scalar input. Let us see what happens if we let the sine generator produce two signals. This
can be achieved by setting the value of its parameter amplitude to {1, 2}.

Translation gives the error message

Error: The parts of
(Sinel.outPort.signal) = (TF.inPort.signal)
have incompatible sizes: [2] and [1]

Errors or failure to expand the equation:
Sinel.outPort.signal = TF.inPort.signal;
Errors or failure to expand vector or matrix expressions.

This error message does not reveal any concealed information. In fact the same error
message is given also when MytransferFunction is not encrypted.

MyTransferFunction assumes that the transfer function is proper, i.e. the degree of the
nominator polynomial is equal to or less than the degree of the denominator polynomial. As
shown above the parameter a = {1, 1}. If we set b= {1, 1, 1} and translate, Dymola issues
the error message:

Error: in concealed equation.
Errors or failure to expand vector or matrix expressions.

For a non-encrypted MyTransferFunction the error message is more informative

Error: Negative sizes in

236

zeros(TF.na-TF.nb, 1)

The sizes are: -1, 1

Errors or failure to expand the equation:
[TF.y]=transpose([zeros(TF.na-TF.nb,1);TF.b])*[TF.x1dot;TF.x];
Found in class MyTransferFunction, MyTransferFunction.mo

at line 78, and used in component TF.

Errors or failure to expand vector or matrix expressions.

However, such an error message cannot be output for the encrypted version, because its
reveals concealed information.

Coupled clutches

We will use the example Modelica.Mechanics.Rotational. Examples.CoupledClutches and
exchange components to illustrate various possibilities to provide or conceal information.

Let us make an encrypted package ConcealedMechanics where we put the components
developed

First, let us just make an identical copy of Modelica.Mechanics.Rotational.Inertia, call it
simply Inertia.

It is most simply done using New/Model to insert it into ConcealedMechanics and extending
from and extending from Modelica.Mechanics.Rotational.Inertia

model Inertia
extends Modelica.Mechanics.Rotational.lnertia;
end lInertia;

This model will reveal all public components

model Inertia "1D-rotational component with inertia”
extends Interfaces.Rigid;
parameter Slunits.lnertia J=1 "Moment of inertia";
Slunits_AngularVelocity w "Absolute angular velocity";
Slunits.AngularAcceleration a "Absolute acceleration™;

We could restrict this by putting w and a in a protected section.

Another approach is to encapsulate the model and design a new interface. In Dymola we
make a new model extending from Modelica.Mechanics.Interfaces. TwoFlanges.

We drag in a component of class Modelica.Mechanics.Rotational.Inertia and connect it.
Inertian
A
= =0
. u
J=d

To declare a parameter J we select Inertial, click the right mouse button, select the
Parameter alternative and set its parameter J and in the right-click menu select ‘Propagate’.
To make the component Inertial protected, we once again click the right mouse button,
select the Attributes alternative and check Protected. The resulting Modelica model is

237

model Inertia2
extends Modelica.Mechanics.Rotational. Interfaces.TwoFlanges;
parameter Modelica.Slunits.Inertia J=1 “Moment of inertia”;
protected
Modelica.Mechanics.Rotational.lInertia Inertial(J=J);
equation
connect(lnertial.flange_a, flange_a);
connect(lnertial.flange_b, flange_b);
end Inertia2;

Now we encrypt the package ConcealedMechanics. For the model CoupledClutches we let
J1 be of class ConcealedMechanics.Inertia and J2 be of class ConcealedMechanics.J2.
Simulation of the model CoupledClutches gives the following variable browser

Yarables I Walues I LIt ;I
EX
-1 phi [U rad
- derjphi] rad/s
- derjphi. 2] rad/s™2
Hflange_a
LD phi rad
L tau M.
Hflange_b
14 [1 kgm?
- [10 radss
- derfw) rad/sts
-[a rad/s2
[Ftarque
Hclutchl
[zind
[tepl
=
[%] flange_a e
rad
H.m
L [1 kam? «
; ¢l

For Jland J2 it is possible to plot the connector variables and set the moment of inertia J.

However, for J1 it is also possible to plot velocity and acceleration. What to do if we would
like to plot the velocity of J2? The velocity can be made available by connecting a Speed-
Sensor

For J1 it is possible to set an initial value for w. For J2 the situation is more complex. By
just looking at it we cannot tell whether there is some internal initialization. When
translating the model, Dymola issues a warning that initial conditions are not fully specified.
The documentation of Inertia2, needs thus to include documentation on initial conditions. In
this case we know that there are no initial conditions are stated for J2, so we may introduce
an initial equation section in the CoupledClutches model containing for example

initial equation

238

J2_flange_a.phi = ... "start angle";
der(J2.flange_a.phi) = ... "start velocity";

to specify the initial position and velocity of J2.

Special annotations for concealment

These special annotations are all grouped inside:

annotation(Protection(..));

The annotations are designed based on the following basic principles:

e Security by default — the default is to not reveal information for encrypted packages. You
as the library developer have to enable each of these flags.

e [t is more important to protect an entire package from being viewed than individual
classes in the package.

e FEasy-to-use.

e Simple logic to make it easy to verify the behavior. Thus you can enable duplication, but
hide diagrams even though this does not make sense.

e Only applied after encryption — thus they can be present in the original library.

The behavior can be summarized in the following table (the missing entries are not
implemented):

Show/allow Annotation Default
All classes Non-packages

Duplicate allowDuplicate nestedAllowDuplicate | false

Diagram showDiagram nestedShowDiagram | false(*)

Text(*) showText nestedShowText false

Icon true

Documentation true

In class browser/ hideFromBrowser false

choices all matching

The annotation applies hierarchically to all classes (unless overridden by a similar
annotation).

Notes:

o false(*) indicates that the default for Examples and Tutorial-packages is
showDiagram=true.

239

o The text window has copying disabled (unless duplicate is allowed), but there are ways of
circumventing this.

o The logic for the browser is reversed.

In addition there are several package-wide settings (also inside Protection) as follows:

Show/allow Annotation Default
Plotting of variables showVariables false
Diagnostics with variable showDiagnostics false
Statistics (e.g. #states) showsStatistics false
Flat-modelica showFlat false

Note that if several encrypted packages are used they must all enable e.g. statistics for the
statistics to be shown.

Scrambling in Dymola

Encryption of a package/model is a useful way of making a package useable without
revealing information. However, in certain scenarios it is not the ideal choice when sending
one (or a few) component models that shall only be used directly.

In such cases the most important information to conceal is data and internal structure, and
there is no need to keep ‘replaceable’ components or classes.

The ideal choice would in that case be to send something that:
e Does not contain internal structure and original data.
e Automatically hides all internal components.

e Can be used as any other model in Dymola (including differentiation for state-
selection).

e Allows you to see exactly what is sent.

This is accomplished using ‘Export/Encrypted total model’ and can be done either on a
model/block or for a package, where each public non-partial model/block is scrambled
individually and then placed together in a package.

Each individual model is scrambled as explained in the next to remove unnecessary
information and the resulting file is then encrypted as an additional safety precaution.

Example of scrambling

We continue with the inertia example, but now rewrite the Inertia model by replacing the
parameter ‘J’ by two variables ‘r’ and ‘m’ and computing the inertia based on these as
follows:

model Inertia3

240

extends Modelica.Mechanics.Rotational.Interfaces._Rigid;

parameter Modelica.Slunits.Length r=1 “Radius™;
protected

constant Modelica.Slunits.Mass m=0.5 “Mass”;

Modelica.Slunits.AngularVelocity w;

annotation (Documentation(info="<html>
An inertia of a certain shape with settable radius.
</html>"));
equation

w = der(phi);

m*r~2/12*der(w) = flange_a.tau + flange_ b.tau;
end Inertia3;

The mass and the shape should be hidden from the user of the model. By selecting
‘Export/Encrypted total model’ the model is first scrambled and then encrypted.

The procedure gives the messages:

Will encrypt to file C:/dymola/work/Inertia3.moe.
First scrambling to file C:/dymola/work/Inertia3.tmp.mo.
Scrambling Inertia3.
The scrambling should preserve the following top-level
variables:

connector flange_a

connector flange_b

parameter r
Scrambling complete, verifying it.
Encrypting.
Encryption complete, file can be found in
C:/dymola/work/Inertia3.moe.

The scrambling indicate which variables should be kept, and include a tag before the
variable to explain why.

Users can examine the Inertia3.tmp.mo file to verify that the no vital information is present:

model Inertia3
encapsulated connector rO
Real phi(unit = "rad") "Absolute rotation angle of flange";
flow Real tau(unit = "N.m'") "Cut torque in the flange";
annotation(Hide=true, Coordsys(extent=[-100, -100; 100, 100],
grid=[2, 2], component=[20, 20]), lcon(Rectangle(extent=[-100,
-100; 100, 100], style(color=0, fillColor=10))));
end rO;
rO flange_a annotation (extent=[-110, -10; -90, 10]);
encapsulated connector rl
Real phi(unit = "rad") "Absolute rotation angle of flange";
flow Real tau(unit = "N.m") "Cut torque in the flange";
annotation(Hide=true, Coordsys(extent=[-100, -100; 100, 100],
grid=[2, 2], component=[20, 20]), lcon(Rectangle(extent=[-100,
-100; 100, 100], style(color=0, fillColor=7))));

end ri;
rl flange_b annotation (extent=[90, -10; 110, 10]);
parameter Real r(unit = "m") = 1 "Radius";

241

protected

Real z1;

Real z2;

annotation(Coordsys(extent=[-100, -100; 100, 100], grid=[2, 2],
component=[20, 20]), Documentation(info="<html>
An inertia of a certain shape with settable radius.
</html>"));

protected equation

flange_a.phi z1;

flange_b._phi z1;

z2 = der(zl);

0.0416666666666667*r"2*der(z2) = flange_a.tau+flange_b.tau;
end lInertia3;

As can be seen the mass and shape have been constant-evaluated making it impossible to
determine their individual values. In addition the names of all internal variables are replaced
by scrambled names (if the variable is preserved at all).

The encrypted file only contains this information, but is in addition encrypted. Encryption
prevents disclosure of even the scrambled information and also makes the model read-only.

242

	Recent features in Dymola
	Graphical editor
	Parameter dialog
	Package browser
	Component browser
	Replaceable components
	Connections
	Graphical editing
	HTML documentation
	Settings and options

	Modelica text editor
	Variable declarations
	Editor context menu
	Other operations in text editor
	Used classes

	Modelica language
	Arrays
	Conditional declarations
	Checking for structural singularities
	Improvements in diagnostics
	Evaluation of parameters
	Dynamics state selection
	Storing of protected variables
	Other

	Simulation
	Commands menu
	Simulation windows
	Improvements in interactive functions
	Minor improvements
	Diagram layer in simulation mode
	Improved experiment setup
	Output of manipulated equations in Modelica format
	Discriminating start values
	Bounds checking for variables
	Traceback message for errors in functions
	Direct link in error log to variables in model window
	Extended online diagnostics for non-linear systems
	Extended diagnostics for stuck simulation
	Ensuring that ‘Stop’ stops the simulation
	New integration algorithms
	Analytic Jacobians
	Commands and Scripting

	Plotting and animation
	Variable browser context menu
	Display units
	Other plotting
	Animation

	Matlab and Simulink
	Libraries
	Modelica Standard Library version 2.2
	Comparison to Modelica Standard Library 1.6
	Other libraries
	Library handling improvements

	Installation and setup of Dymola

	Modelica Data Structures and GUI
	Records and dialogs
	Tabs and Groups
	Labels and layout
	Alternative forms for input fields
	Illustrations and formatting in dialogs
	Declare variable dialog
	Specialized GUI widgets
	Checking of input data

	Arrays of records

	Visualize 3D
	Introduction
	Inserting and removing objects
	Basic primitives
	Surface Plots

	Model Experimentation
	Introduction
	Varying parameters of a model
	Case Study: CoupledClutches model
	Perturb parameters
	Sweep One Parameter – two variants
	Sweep Two parameters
	Monte Carlo Analysis

	Data Preprocessing
	Setting up for preprocessing
	Limiting and detrending signals
	Analysing Signals: is there any noise?
	Filtering signals

	Model calibration
	Introduction
	The basics of setting up and executing a calibration task
	Vehicle data
	Vehicle model
	Validation of the nominal model
	Measurement file formats
	Calibration
	Free start values
	Tune the parameters
	Validation using measurements from first gear
	The setup as Modelica code

	Saving the setup for reuse
	Reusing a setup for a similar operation
	Analysing parameter sensitivities and dependencies
	Sweep one parameter – sweepParameter
	Sweep two parameters – sweepTwoParameters
	Response to parameter perturbations - perturbParameters
	Check if tuners can be calibrated – checkCalibrationSensitivity

	Design optimization
	Introduction
	First optimization setup
	Multi-criteria experimenting
	Multi-case optimization

	Model Management
	Version management
	The context of version management
	Scope of implementation
	Supported features
	Selecting version management system
	Version management using CVS
	An example of file management using CVS
	Version management using SVN
	An example of file management using SVN
	References

	Model dependencies
	Cross-reference options

	Encryption in Dymola
	Introduction
	Visible and concealed classes
	Developing encrypted libraries
	Using encrypted components
	Examples
	Special annotations for concealment
	Scrambling in Dymola

